Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clear view of the clouds will bring better weather forecasts

10.08.2005


Accurately forecasting rain will be easier thanks to new insights into clouds from the University of Leeds, UCL (University College London) and others. Details of a new model for predicting cloud and rain-formation are published today in the Proceedings of the Royal Society (10 August 2005).



Existing forecasting models – including ones used by the UK’s Meteorological Office - assume rain droplets fall through still air within a cloud. However, there is turbulence within clouds that can speed up droplet settling and increase the likelihood of rain.

The international team developed a new mathematical model and showed for the first time how pockets of whirling air (tiny eddies) encourage collisions between very small droplets (about 1/1000 of a cm) and slightly larger droplets within a cloud. The collisions lead to the rapid growth of the larger drops – larger than a critical size of 20 microns ( 1 micron is a millionth of a metre). This size is necessary for rain to form, fall out of the clouds and, when conditions are right, reach the ground.


The model’s results were checked against earlier measurements from aircraft flying through different types of clouds. The cloud measurements showed the model was more accurate than existing ones, which often underestimate rainfall.

Leeds earth and environment research fellow Dr Sat Ghosh: "When your plane comes in to land you can see patterns formed by whirling air and sometimes feel the turbulence as you descend through a cloud. As cloud droplets descend through the smallest whirls of turbulence they speed up, causing them to collide with each other and the drops to grow, eventually getting big enough to fall as rain."

Lord Julian Hunt from the UCL department of space and climate physics (and ex-Chief Executive of the UK Met Office) said: " With this theory it is possible to explain how dust in the atmosphere, for example over urban areas or over deserts, can cause the initiation of very small droplets so that big drops do not form. This can reduce the average rain fall, but can trigger exceptionally heavy rain in very deep clouds. This may have happened recently in Mumbai and Romania.’’

Further work which will help improve weather forecasting, including the way ice crystals, water droplets and particles interact is planned.

Dr Sat Ghosh | alfa
Further information:
http://www.env.leeds.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>