Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No trouble removing oil from water

05.08.2005


A simple tank-and-siphon system for removing oil from oily water and protecting the environment is about to be launched internationally by an engineering team from the University of New South Wales.



The Extended Gravity Oil Water Separation (EGOWS) concept is an improvement on the industry-standard American Petroleum Institute (API) gravity separator that has been widely used for the last 60 years.

The API separator, originally designed for oil refineries, is not designed to reduce the oil content of water below about 100 parts per million and is not suitable for releasing water directly to the environment.


Regulatory requirements for the release of oil-contaminated water to the environment are becoming stricter worldwide. It is common for environmental protection authorities to impose a limit of 10 parts of oil per million of effluent water, and increasingly for there to be no visible sheen on the receiving water.

Although other systems can achieve low effluent oil contents, they tend to be more energy intensive and incur higher costs, particularly for ongoing maintenance, says David Tolmie, who developed EGOWS with colleague Peter Stone from the University’s Water Research Laboratory in the School of Civil and Environmental Engineering.

"EGOWS can removes oil down to below 10 parts per million, requires no power and is most useful in situations that are unattended," says Mr Tolmie. "Most of the EGOWS installations to date in Australia have been in electricity substations to eliminate the small but potentially disastrous risk of a major spill of oil to the environment."

The system’s secret lies in its ability to take episodic inflows of oily water and extend the time it spends in the separator tank.

Because oil is less dense, it rises to the surface of the water. The more time given to effluent water in the separator, the more oil that can be separated. EGOWS achieves a separation time of days in the tank as opposed to 20 or 30 minutes in an API separator.

This is achieved by arranging for the separator to be in a partially emptied state before the arrival of episodic inflows of oily water. When the separator is full, water is released automatically using a siphon that involves no mechanical devices or power requirements.

Oily water inflows are accumulated progressively, with no release of water until it reaches a siphon priming level. API separators and other separators that operate full of water , release equal quantities of water as soon as there is an episodic inflow of oily water, creating the risk that oil droplets can escape into the separator outlet.

Tolmie and Stone began researching their concept back in the late 1990s when Energy Australia asked them to review their oil separator systems.

"We were looking for a simpler way of doing things," says Tolmie. "One way is to make the tank bigger – and that works – but we realised we could use the existing API separators more productively. The beauty of our concept is that existing systems can be retrofitted with relative ease."

New South Innovations, the commercialisation arm of UNSW, has since patented the concept and successfully licensed it to Australian companies. . Energy Australia estimates their EGOWS system could save the company $18 million in 10 years. Caltex Australia has installed two EGOWS units which they describe as innovative and highly effective solutions to their stormwater treatment requirements.

New South Innovations has obtained patents in America, Europe, New Zealand and parts of Asia and is actively looking for potential international licensees.

"The cost of an oil spill clean up can be many times the cost of a separator which will contain the oil spill automatically," said Tolmie.

EGOWS is suitable for use with episodic inflows of oil or oily water in such places as electricity substations, oil storages, transport and container terminals, highways and ports.

Mary O’Malley | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>