Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No trouble removing oil from water

05.08.2005


A simple tank-and-siphon system for removing oil from oily water and protecting the environment is about to be launched internationally by an engineering team from the University of New South Wales.



The Extended Gravity Oil Water Separation (EGOWS) concept is an improvement on the industry-standard American Petroleum Institute (API) gravity separator that has been widely used for the last 60 years.

The API separator, originally designed for oil refineries, is not designed to reduce the oil content of water below about 100 parts per million and is not suitable for releasing water directly to the environment.


Regulatory requirements for the release of oil-contaminated water to the environment are becoming stricter worldwide. It is common for environmental protection authorities to impose a limit of 10 parts of oil per million of effluent water, and increasingly for there to be no visible sheen on the receiving water.

Although other systems can achieve low effluent oil contents, they tend to be more energy intensive and incur higher costs, particularly for ongoing maintenance, says David Tolmie, who developed EGOWS with colleague Peter Stone from the University’s Water Research Laboratory in the School of Civil and Environmental Engineering.

"EGOWS can removes oil down to below 10 parts per million, requires no power and is most useful in situations that are unattended," says Mr Tolmie. "Most of the EGOWS installations to date in Australia have been in electricity substations to eliminate the small but potentially disastrous risk of a major spill of oil to the environment."

The system’s secret lies in its ability to take episodic inflows of oily water and extend the time it spends in the separator tank.

Because oil is less dense, it rises to the surface of the water. The more time given to effluent water in the separator, the more oil that can be separated. EGOWS achieves a separation time of days in the tank as opposed to 20 or 30 minutes in an API separator.

This is achieved by arranging for the separator to be in a partially emptied state before the arrival of episodic inflows of oily water. When the separator is full, water is released automatically using a siphon that involves no mechanical devices or power requirements.

Oily water inflows are accumulated progressively, with no release of water until it reaches a siphon priming level. API separators and other separators that operate full of water , release equal quantities of water as soon as there is an episodic inflow of oily water, creating the risk that oil droplets can escape into the separator outlet.

Tolmie and Stone began researching their concept back in the late 1990s when Energy Australia asked them to review their oil separator systems.

"We were looking for a simpler way of doing things," says Tolmie. "One way is to make the tank bigger – and that works – but we realised we could use the existing API separators more productively. The beauty of our concept is that existing systems can be retrofitted with relative ease."

New South Innovations, the commercialisation arm of UNSW, has since patented the concept and successfully licensed it to Australian companies. . Energy Australia estimates their EGOWS system could save the company $18 million in 10 years. Caltex Australia has installed two EGOWS units which they describe as innovative and highly effective solutions to their stormwater treatment requirements.

New South Innovations has obtained patents in America, Europe, New Zealand and parts of Asia and is actively looking for potential international licensees.

"The cost of an oil spill clean up can be many times the cost of a separator which will contain the oil spill automatically," said Tolmie.

EGOWS is suitable for use with episodic inflows of oil or oily water in such places as electricity substations, oil storages, transport and container terminals, highways and ports.

Mary O’Malley | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Chances to treat childhood dementia

24.07.2017 | Health and Medicine

Improved Performance thanks to Reduced Weight

24.07.2017 | Automotive Engineering

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>