Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No trouble removing oil from water

05.08.2005


A simple tank-and-siphon system for removing oil from oily water and protecting the environment is about to be launched internationally by an engineering team from the University of New South Wales.



The Extended Gravity Oil Water Separation (EGOWS) concept is an improvement on the industry-standard American Petroleum Institute (API) gravity separator that has been widely used for the last 60 years.

The API separator, originally designed for oil refineries, is not designed to reduce the oil content of water below about 100 parts per million and is not suitable for releasing water directly to the environment.


Regulatory requirements for the release of oil-contaminated water to the environment are becoming stricter worldwide. It is common for environmental protection authorities to impose a limit of 10 parts of oil per million of effluent water, and increasingly for there to be no visible sheen on the receiving water.

Although other systems can achieve low effluent oil contents, they tend to be more energy intensive and incur higher costs, particularly for ongoing maintenance, says David Tolmie, who developed EGOWS with colleague Peter Stone from the University’s Water Research Laboratory in the School of Civil and Environmental Engineering.

"EGOWS can removes oil down to below 10 parts per million, requires no power and is most useful in situations that are unattended," says Mr Tolmie. "Most of the EGOWS installations to date in Australia have been in electricity substations to eliminate the small but potentially disastrous risk of a major spill of oil to the environment."

The system’s secret lies in its ability to take episodic inflows of oily water and extend the time it spends in the separator tank.

Because oil is less dense, it rises to the surface of the water. The more time given to effluent water in the separator, the more oil that can be separated. EGOWS achieves a separation time of days in the tank as opposed to 20 or 30 minutes in an API separator.

This is achieved by arranging for the separator to be in a partially emptied state before the arrival of episodic inflows of oily water. When the separator is full, water is released automatically using a siphon that involves no mechanical devices or power requirements.

Oily water inflows are accumulated progressively, with no release of water until it reaches a siphon priming level. API separators and other separators that operate full of water , release equal quantities of water as soon as there is an episodic inflow of oily water, creating the risk that oil droplets can escape into the separator outlet.

Tolmie and Stone began researching their concept back in the late 1990s when Energy Australia asked them to review their oil separator systems.

"We were looking for a simpler way of doing things," says Tolmie. "One way is to make the tank bigger – and that works – but we realised we could use the existing API separators more productively. The beauty of our concept is that existing systems can be retrofitted with relative ease."

New South Innovations, the commercialisation arm of UNSW, has since patented the concept and successfully licensed it to Australian companies. . Energy Australia estimates their EGOWS system could save the company $18 million in 10 years. Caltex Australia has installed two EGOWS units which they describe as innovative and highly effective solutions to their stormwater treatment requirements.

New South Innovations has obtained patents in America, Europe, New Zealand and parts of Asia and is actively looking for potential international licensees.

"The cost of an oil spill clean up can be many times the cost of a separator which will contain the oil spill automatically," said Tolmie.

EGOWS is suitable for use with episodic inflows of oil or oily water in such places as electricity substations, oil storages, transport and container terminals, highways and ports.

Mary O’Malley | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>