Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor Web Simulation Investigates Technique to Improve Prediction of Pollution Across the Globe

11.07.2005


To test the value and benefit of using dynamic sensor web measurement techniques and adaptive observing strategies, NASA technologists have formulated experiments using instruments on two NASA Earth observing satellites, Aqua and Aura that fly in formation high above Earth. As an example above, Aura’s Tropospheric Emission Spectrometer (TES) and Aqua’s Moderate Resolution Imaging Spectroradiometer (MODIS) work in tandem to make observations of the same targeted area. Credit: NASA


The image shows Aura and Aqua satellites working as a space-based "search-and-rescue" team to observe forest fires using sensor web experiment measurements. Credit: NASA


For asthmatics and for anyone with respiratory problems, air pollution can significantly impair simple everyday activities. NASA is trying to tie together satellites and stations on the ground to develop a "sensor web" to track this pollution and improve air quality forecasts.

Understanding how tropospheric or near-surface-level ozone is produced, distributed and transported from city to city, region to region and continent to continent is an important step toward improving the complex mathematical computer models used to forecast air pollution as we do for weather. Such models can be used to provide alerts days in advance so that people sensitive to pollutants can modify planned outdoor activities to minimize their exposure.

The troposphere is where we all live, work, play and breathe! It’s the region of the atmosphere where our weather occurs and it extends from the Earth’s surface to roughly the cruising altitude of a passenger jet - about 40,000 feet. In some cases air pollutants have natural causes such as lightning induced wildfires that can emit large plumes of particulates into the troposphere. Fossil fuel burning in industrial areas and vehicular traffic in metropolitan areas are also major pollutant sources. Complex chemical interactions and atmospheric processes can transport these pollutants across thousands of miles.



To improve our ability to track the transport of pollutants from their various sources to populated cities and towns around the globe, NASA technologists are exploring an innovative technology called the “sensor web.” This interconnected “web of sensors” coordinates observations by spacecraft, airborne instruments and ground-based data-collecting stations. Instead of operating independently, these sensors collect data as a collaborative group, sharing information about an event as it unfolds over time. The sensor web system is able to react by making new, targeted measurements as a volcanic ash plume is transported to air traffic routes, or when smoke of a wildfire is carried aloft, then dispersed over large metropolitan areas. The sensor web has the potential to improve the response time of our observing systems by reconfiguring their sensors to react to variable or short-lived events and then transmit that information to decision makers so that appropriate alerts can be issued to those people living in the impacted areas.

To test the value and benefit of using dynamic sensor web measurement techniques and adaptive observing strategies, NASA technologists have formulated experiments involving two NASA Earth observing satellites that fly in formation high above Earth. These consist of Aqua and the recently launched Aura, along with sophisticated atmospheric chemistry models that can forecast the global distribution and concentration of one particular pollutant - carbon monoxide (CO).

“The sensor web behaves as a search-and-rescue team,” said Principal Investigator Stephen Talabac, lead technologist with the Science Data Systems Branch at NASA’s Goddard Space Flight Center, Greenbelt, Md. “Each sensor collects data as part of a team of cooperating sensors. It is able to respond to the needs of the team members. The sensors on one satellite react to data and information sent to it from other sensors on other satellites that have different but complementary capabilities. The sensors then change their observing strategy accordingly, to target and then collect data for a particular event.” Talabac offered the analogy of a search-and-rescue team whereby the unique skills of firefighters, police officers, and paramedics are brought together to form and then implement a plan to find and rescue a person in need of help.

Computer forecast models can also help decide where the sensors should make observations. If a model forecasts high concentrations of CO, the sensor web’s instruments can be commanded to make targeted observations of those locations. The actual sensor measurements can then be fed back into the computer model to improve the accuracy of the forecast. Talabac’s team hopes to illustrate how such a model-driven sensor web could be used to enhance current measurement techniques, and bring to bear multiple complementary instruments to respond to rapidly changing environmental conditions.

“These simulations fall into the category of ‘proof of concept,’ to assess the feasibility of what is also planned for the next generation observing systems to enable real, full-fledged sensor web measurements,” explained Talabac. “We hope to demonstrate that such an approach, or ‘targeted intelligent data collection techniques,’ can bring about more efficient use of our Earth observation satellites and their sensors.”

In September 2005, Talabac’s team will use an atmospheric chemistry computer model to predict global CO distribution. The team will also make measurements using Aura’s Tropospheric Emission Spectrometer (TES), at key locations to improve the model prediction. In the future the team hopes to be able to use their prototype software to recommend regions where the TES instrument could be commanded to look and make real measurements at key locations predicted by the model.

“Our goal here is improve our ability to monitor and assess the Earth’s environment,” Talabac added. “With the sensor web, policy and decision makers will have access to the most useful and timely information available to help maintain a high quality of life and to potentially save lives.”

Gretchen Cook-Anderson | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2005/global_pollution.html

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>