Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Show Wildlife Corridors Promote Animal, Plant Dispersal

01.07.2005


A study by a North Carolina State University zoologist and colleagues from the University of Florida and Allegheny College says that landscape corridors – strips of land connecting separated areas of similar habitat – are effective in promoting animal and plant seed movement to help sustain diversity and dispersal of native animals and plants.


An example of a landscape corridor connecting two patches of habitat at the Savannah River Site National Environmental Research Park.



In addition, says Dr. Nick Haddad, associate professor of zoology at NC State and a co-author of the paper describing the research, the study shows that easy-to-measure animal behaviors can serve as predictors for whether landscape corridors will be effective dispersal mechanisms for those specific animals and the plants they eat.

The research is published in the July 1 edition of Science.


Haddad and other scientists have published a number of studies on the efficacy of landscape corridors in promoting dispersal of animals. Haddad says corridors essentially reconnect habitats that were once connected before fragmentation – brought on by urban or farm development, for example – threatened native animals and plants. Lack of dispersal means animals and plants become vulnerable to being lost or developing negative genetic effects found in small populations, like those acquired through inbreeding, Haddad says.

The researchers tested their corridors at the Savannah River Site National Environmental Research Park, a federally protected area on the South Carolina-Georgia border that is mostly dominated by pine tree forests. At the researchers’ request, the U.S. Forest Service arranged eight similar sites; each site included five areas cleared of trees. The central patch was connected to one other patch by a 150-meter-long, 25-meter-wide corridor, while three other patches were isolated from the central patch – and themselves – by forest.

In the study, the researchers found that Eastern Bluebirds, one of the major seed dispersers in South Carolina, were 31 percent more likely to be found in the center of connected patches than the center of unconnected patches. The study also showed that seeds from wax myrtle plants – found in the fecal matter of the birds – were 37 percent more likely to be found in traps in the center of connected patches than in traps in the center of unconnected patches.

These results – showing increased movement of animals and plants in habitats connected by corridors – mimicked other previously published studies done by these and other researchers, Haddad says.

But this study has an even more important and broad impact, according to Haddad.

The researchers observed behaviors of bluebirds during the course of the study and found that the birds were not necessarily using the landscape corridors, but were instead often traveling along the edges of the corridors.

Using these behaviors in a predictive model, the researchers arrived at estimates of the numbers of birds distributing seeds to both the connected and unconnected patches.

The study shows a “tight fit” between predictions and actual seed movement.

“From behavioral studies, we can predict how animals will move in large-scale landscapes,” Haddad says. “This study is specifically designed to understand how species might move through corridors. But understanding behavioral approaches is important in any context where you’re worried about the spread of organisms through a landscape, like the spread of non-native invasive species or birds that carry diseases.”

The study was funded by the National Science Foundation and by the Department of Energy-Savannah River Operations Office through the U.S. Forest Service Savannah River Institute.

Dr. Nick Haddad | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>