Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the secrets of the Amazon

16.06.2005


The world’s largest and most species rich forests are changing faster than we thought. We know the Amazonian rainforests are disappearing – around a fifth has been lost to logging and cattle ranging – but University geographers have discovered that the forests are changing at a remarkable rate. Their findings suggest we still don’t understand exactly how long the rainforests can continue to be the planet’s ‘lung’ or even how they really work.



Geographers and earth scientists have just returned from a two-month field trip deep in the rainforests of Amazonian Peru with colleagues from Peru, Germany, Spain, Taiwan and Colombia. “We’re very interested in the role of tropical forests in the global carbon cycle,” said Natural Environment Research Council fellow Dr Tim Baker. “These forests store large amounts of carbon. It’s vital to understand exactly how much carbon they’re holding and how this may change over time.”

An important aim of the RAINFOR project is to show how Amazonian forests are not all the same. The team has been measuring the diameter of the same trees in over 100 plots every four to five years since the early 1980s. This enables them to calculate how much carbon is stored in the tree, and the forest as a whole, and how this has changed since the project began.


“There’s a lot of variation in how much carbon is stored in these forests in different sites,” said Dr Baker. “Trees in Peru have lower density wood than those in Brazil, so the forest stores less carbon. We believe this is related to the soil quality rather than the climate – on the generally richer soils in Peru, faster growing species with lower density wood have a ‘competitive’ advantage.”

They have also discovered that trees are dying at an increased rate. However, although they’re dying quicker, their growth rates have also increased, with the overall effect that the amount of carbon stored in the Amazon forests has also gone up slightly. An increased biomass (a bigger tree) means more carbon has been taken out of the atmosphere, so these trees have been helping to slow climate change.

The researchers believe that, ironically, the faster growth and increased biomass is because the extra CO2 in the atmosphere is ‘fertilising’ the forests – the rainforests are responding to man-made climate change.

“Overall, this would seem to be very good news,” said tropical ecology reader Dr Oliver Phillips. “But we don’t know what’s going to happen in the long-term. Obviously if trees continue to die at younger ages then we can expect biomass to start to fall. It may also have a negative effect on the biodiversity of the forests.

“For example, there’s a real worry that faster growth rates will favour more ‘weedy’ tree species which have less dense wood and therefore store less carbon. We are already seeing some changes: for example fast-growing lianas, woody vines of the kind favoured by Tarzan, are becoming more dominant.”

The team is using a database of 2,500 kinds of tree to see whether species and particular characteristics of the forest are changing on a widespread basis. Species such as balsa are lower density, so contain less carbon. Heavy wood, like that of the brazil nut or mahogany trees, is much better in terms of acting as a carbon store so a decrease in the number of these types of trees could have environmentally disastrous implications.

Changes in biodiversity – the patterns over the last 25 years, what is likely to happen, and the effect this will have on climate change – are the focus of the team’s new NERC-funded initiative, as part of the wider RAINFOR project, which began in October 2004. However, understanding the basic principles of how the rainforest works remains crucial to this. “We’ve just discovered a new forest type that turns conventional wisdom about the plant species composition of Amazon forests on its head,” explains Dr Baker.

“Previous work has found a strong east/west divide in the kinds of trees found in Amazonia. But on unusual soils in the far western limit of Amazonia, we have discovered vegetation that is essentially eastern Amazonian in composition.” New plots in Peru have species more similar to those found in Brazil than in neighbouring forests.

The big question for the team now is: what controls the forests – current ecological processes or historical patterns of evolution? “Understanding these patterns will inform the kinds of changes we can expect from global environmental change,” said Dr Baker.

Leeds is top of a list of successful bidders for ‘blue skies awards’ from NERC to support high quality research, one of which is funding this project. The RAINFOR team’s findings show the importance of unlocking the secrets of the Amazon.

“These forests are absorbing more than twice the amount of carbon dioxide emissions produced by the UK every year,” said Dr Baker. “Understanding their future is of global importance.”

Hannah Love | alfa
Further information:
http://reporter.leeds.ac.uk
http://www.leeds.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>