Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Richness of Ocean Life Reflected in a Test Tube


Ecologists know that when it comes to habitats, size matters, and now a new study finds that contrary to earlier beliefs, that maxim holds true right down to the tiny plants at the bottom of many oceanic and freshwater food chains.

The study, conducted by University of Florida, University of Kansas and University of Texas researchers, is important because it shows that tiny microbes follow the same diversity patterns as larger organisms, said Robert D. Holt, a UF professor of zoology and one of the study’s authors. The study appears in the current issue of the Proceedings of the National Academy of Sciences.

In addition, species diversity is “a reflection of the richness of life,” Holt said. Though there are few rigorous mathematical laws in ecology, that relationship between the size of a habitat and the range of species in it has been observed for nearly all organisms. “Understanding the diversity of life itself is a basic scientific question, in the same way as understanding the causes for the diversity of human civilizations around the world, or understanding questions like the origin of the universe,” Holt said.

Earlier studies have suggested that the diversity-habitat size rule may not hold true for one of the most ubiquitous species in the world: phytoplankton, a group of microscopic algae afloat in the world’s oceans, seas and lakes.

In contrast, the new study demonstrates that the range of phytoplankton species in an ecosystem increases with ecosystem size according to a general mathematical rule. The study also finds that this holds true whether the system is a laboratory test tube or an ocean. “A skeptic might say, ‘I cannot conceive of how a bottle in the lab that holds as much as a can of beer can tell me anything about Lake Okeechobee,’” said Val Smith, professor of ecology and evolutionary biology at the University of Kansas and the lead author on the study.

But for at least this one principle, that connection exists, Smith said. “Species diversity scales upward with size,” he said.

The researchers analyzed pre-existing scientific data on phytoplankton species in 142 oceans, lakes and natural ponds worldwide, ranging from a few square inches to millions of square miles, and from 239 laboratory test tubes, flasks and beakers.
They found that not only did a correlation between species diversity and habitat area exist for natural water bodies like lakes and oceans, but that an identical pattern exists for experimental ecosystems such as test tubes and laboratory tanks.

“Interestingly, that must say something about the mechanism that controls species diversity,” Smith said. “If it works for (habitats ranging from) little tiny flasks on the desktop to the Arctic Ocean, that says something about how size really matters. We need to figure out which elements of size are the dominant factors that cause this pattern.”

Some of the factors known to influence species variety within a habitat are simply size-dependent, Holt said. For example, some species, such as sharks, simply require more space to survive. “There’s not enough for them to eat in a small lake,” he said.

Bigger ecosystems also will tend to have a greater variety of mini-habitats within them. A large lake contains both shallow and deep areas and can therefore accommodate a greater variety of organisms than a shallow pond, he said. And with the larger total population sizes found in a larger habitat, overall species extinction rates are likely to be lower.

Other possible causes are related to interactions between ecosystems. Larger habitats are bigger targets for the wind or for migrating birds that can transfer algal cells. And larger freshwater bodies tend to have higher river inflows, which can also transport more algae.

For the phytoplankton, the most important factors influencing species diversity are not yet certain, Holt said. However, because the experimental ecosystems were cut off from the surrounding area but the diversity trend was nearly identical to that of the open natural systems, internal factors may play a stronger role, he said. “You’re restricting the processes that could be acting on them, but you’re still seeing this scaling effect,” he said.

Previous studies have looked for a species-area relationship in phytoplankton but found none, possibly because their sample sizes were too small, Smith said. The current study used data from samples spanning more than 15 orders of magnitude, compared with three or four in previous studies.

The results are encouraging for scientists who want to get a handle on scientific questions in hard-to-study, ocean-scale systems, Holt said.

“By studying these smaller systems we may be getting insight into much larger systems where it’s impossible to do experiments and where it’s really hard even to get the raw data,” he said.

Smith agreed. “The fact that lab-scale systems behave similarly to larger natural systems gives us hope that if we ask questions at the lab scale, properly phrased, we can get reasonable answers.”

| newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>