Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Richness of Ocean Life Reflected in a Test Tube


Ecologists know that when it comes to habitats, size matters, and now a new study finds that contrary to earlier beliefs, that maxim holds true right down to the tiny plants at the bottom of many oceanic and freshwater food chains.

The study, conducted by University of Florida, University of Kansas and University of Texas researchers, is important because it shows that tiny microbes follow the same diversity patterns as larger organisms, said Robert D. Holt, a UF professor of zoology and one of the study’s authors. The study appears in the current issue of the Proceedings of the National Academy of Sciences.

In addition, species diversity is “a reflection of the richness of life,” Holt said. Though there are few rigorous mathematical laws in ecology, that relationship between the size of a habitat and the range of species in it has been observed for nearly all organisms. “Understanding the diversity of life itself is a basic scientific question, in the same way as understanding the causes for the diversity of human civilizations around the world, or understanding questions like the origin of the universe,” Holt said.

Earlier studies have suggested that the diversity-habitat size rule may not hold true for one of the most ubiquitous species in the world: phytoplankton, a group of microscopic algae afloat in the world’s oceans, seas and lakes.

In contrast, the new study demonstrates that the range of phytoplankton species in an ecosystem increases with ecosystem size according to a general mathematical rule. The study also finds that this holds true whether the system is a laboratory test tube or an ocean. “A skeptic might say, ‘I cannot conceive of how a bottle in the lab that holds as much as a can of beer can tell me anything about Lake Okeechobee,’” said Val Smith, professor of ecology and evolutionary biology at the University of Kansas and the lead author on the study.

But for at least this one principle, that connection exists, Smith said. “Species diversity scales upward with size,” he said.

The researchers analyzed pre-existing scientific data on phytoplankton species in 142 oceans, lakes and natural ponds worldwide, ranging from a few square inches to millions of square miles, and from 239 laboratory test tubes, flasks and beakers.
They found that not only did a correlation between species diversity and habitat area exist for natural water bodies like lakes and oceans, but that an identical pattern exists for experimental ecosystems such as test tubes and laboratory tanks.

“Interestingly, that must say something about the mechanism that controls species diversity,” Smith said. “If it works for (habitats ranging from) little tiny flasks on the desktop to the Arctic Ocean, that says something about how size really matters. We need to figure out which elements of size are the dominant factors that cause this pattern.”

Some of the factors known to influence species variety within a habitat are simply size-dependent, Holt said. For example, some species, such as sharks, simply require more space to survive. “There’s not enough for them to eat in a small lake,” he said.

Bigger ecosystems also will tend to have a greater variety of mini-habitats within them. A large lake contains both shallow and deep areas and can therefore accommodate a greater variety of organisms than a shallow pond, he said. And with the larger total population sizes found in a larger habitat, overall species extinction rates are likely to be lower.

Other possible causes are related to interactions between ecosystems. Larger habitats are bigger targets for the wind or for migrating birds that can transfer algal cells. And larger freshwater bodies tend to have higher river inflows, which can also transport more algae.

For the phytoplankton, the most important factors influencing species diversity are not yet certain, Holt said. However, because the experimental ecosystems were cut off from the surrounding area but the diversity trend was nearly identical to that of the open natural systems, internal factors may play a stronger role, he said. “You’re restricting the processes that could be acting on them, but you’re still seeing this scaling effect,” he said.

Previous studies have looked for a species-area relationship in phytoplankton but found none, possibly because their sample sizes were too small, Smith said. The current study used data from samples spanning more than 15 orders of magnitude, compared with three or four in previous studies.

The results are encouraging for scientists who want to get a handle on scientific questions in hard-to-study, ocean-scale systems, Holt said.

“By studying these smaller systems we may be getting insight into much larger systems where it’s impossible to do experiments and where it’s really hard even to get the raw data,” he said.

Smith agreed. “The fact that lab-scale systems behave similarly to larger natural systems gives us hope that if we ask questions at the lab scale, properly phrased, we can get reasonable answers.”

| newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>