Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wetlands clean water and may control neighborhood flood problems

03.03.2005


Constructed wetlands in planned communities can aid in surface water cleanup and flood prevention, according to Purdue University scientists who completed a five-year study on the management system.

The research, begun in 1998 on three constructed ponds, or wetland cells, on a newly renovated golf course on the university campus, showed that 11 of 17 measurable chemicals in surface water were reduced after running through the system, said Ron Turco, soil microbiologist and senior author of the report. Study results are published in the February issue of the journal Ecological Engineering. "Golf courses are a perfect place for constructed wetlands used as part of a water management system because wetlands can filter chemicals out of surface water, and they can also store excess water during storms," Turco said.

In addition, constructed wetlands act as a holding area that can provide recycled water for irrigation, a system the scientists used on the golf course, he said. "Constructed wetlands on golf courses and in planned communities are a very good water management system," Turco said. "When you build houses, roads and driveways, lots of hard surface is added, leaving no place for water to go. Building dikes and levees just moves the water problem somewhere else, causing flooding elsewhere."



Because golf courses are mostly open surfaces, as opposed to all the hard surfaces in subdivisions and shopping malls, water can soak into the soil and flow into a constructed wetland, he said. As surface water flows from adjacent roads and parking lots onto a golf course and into the constructed wetlands, nutrients, suspended solids, organic metals, trace elements, pesticides and pathogens are removed or even eradicated. "Wetlands actually add a positive aspect to the water balance of a given region because they are basically infiltration sites," Turco said.

The most vital function of constructed wetlands is preventing flooding and environmental contamination, he said. "Use of constructed wetlands can be significant in water management and water quality just by their use on the approximately 16,000 U.S. golf courses the National Golf Foundation lists," Turco said. "In addition, many new home developments are planned around golf courses, and these developments need ways of containing, cleaning and directing water runoff, especially during storms."

The wetlands also are of aesthetic value on golf courses and residential areas, and they create homes for wildlife and flora, he said. Using the recycled water for irrigation ensures that the wetlands remain wet and the recycled surface water is less expensive than pumping ground water.

The researchers evaluated a three-pond system on Purdue’s Pete Dye-designed Kampen Golf Course in order to study the quality of the water from when it entered the golf course until it exited into a holding pond or a recovering natural wetland, the Lilly Nature Center’s celery bog, in West Lafayette.

The almost 11,000 water plants placed in the ponds are responsible, along with microbes, for retaining or degrading the various chemicals associated with surrounding urban sprawl and the course itself. Some of the chemicals found in entering water included atrazine, chloride, nitrate, ammonia, nitrogen, organic carbon, phosphorus, aluminum, iron, potassium and manganese. In all, 83 chemicals were monitored, but only 17 were present in measurable amounts.

Four water quality monitors located along the wetland system checked for chemical levels. The first monitor was at the golf course’s east end where surface water enters the course. The fourth monitor was at the northwest end where water leaves the course and enters the celery bog.

The scientists also measured how much water entered and how fast it flowed through the system, and then compared data taken during both storm and non-storm days.

It’s important to design wetlands so they have enough capacity to handle the runoff in the particular water management area, Turco said. Water flow speed and the ponds’ depths must vary to ensure that the microbes remain active so they can degrade contaminants. Currently the scientists are planning new constructed wetlands studies in other venues.

The other researchers involved in this study were Eric A. Kohler and Zac Reicher both of the Department of Agronomy, and Vickie L. Poole, of the Department of Forestry and Natural Resources. Turco and Reicher also are members of the Purdue Turfgrass Program.

The United States Golf Association, Indiana Water Resources Research Center and U.S. Environmental Protection Agency Region 5 provided funding for this study. Golf course architect Dye was instrumental in designing Purdue’s Kampen course and securing support for the use of the wetlands. Spence Restoration Nursery provided the wetland plants and Heritage Environmental, Indianapolis, provided water sample analysis.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Ron Turco, (765) 494-8077, rturco@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, forbes@purdue.edu Agriculture News Page

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>