Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers improve predictions of cloud formation for better global climate modeling

13.12.2004


Researchers are developing improved methods for representing cloud formation in global climate models because of increased aerosol pollution, which gives clouds more cooling power and affects precipitation. Here, cumulonimbus clouds develop over the mountains of western North Carolina. Photo by Grant W. Goodge, Courtesy of NOAA


Atmospheric scientists have developed simple, physics-based equations that address some of the limitations of current methods for representing cloud formation in global climate models – important because of increased aerosol pollution that gives clouds more cooling power and affects precipitation.

These researchers – led by the Georgia Institute of Technology -- have also developed a new instrument for measuring the conditions and time needed for a particle to become a cloud droplet. This will help scientists determine how various types of emissions affect cloud formation. The research is funded by the National Science Foundation.

Clouds play a critical role in climate, Nenes explained. Low, thick ones cool the earth by reflecting solar radiation whereas high, thin clouds have warming properties by trapping infrared radiation emitted by the earth. Scientists have learned that human activities influence cloud formation. Airborne particles released by smokestacks, charcoal grills and car exhaust restrict the growth of cloud droplets, causing condensing water to spread out among a larger number of smaller droplets. Known as the "indirect aerosol effect," this gives clouds more surface area and reflectivity, which translates into greater cooling power. The clouds may also have less chance of forming rain, which allows cloud to remain longer for cooling.



"Of all the components of climate change, the aerosol indirect effect has the greatest potential cooling effect, yet quantitative estimates are highly uncertain," said Nenes, who holds dual appointments in the Georgia Tech School of Earth and Atmospheric Sciences and the School of Chemical and Biomolecular Engineering. "We need to get more rigorous and accurate representation of how particles modify cloud properties. Until the aerosol indirect effect is well understood, society is incapable of assessing its impact on future climate."

Current computer climate models can’t accurately predict cloud formation, which, in turn, hinders their ability to forecast climate change from human activities. "Because of their coarse resolution, computer models produce values on large spatial scales (hundreds of kilometers) and can only represent large cloud systems," Nenes said.

Aerosol particles, however, are extremely small and are measured in micrometers. This means predictive models must address processes taking place on a very broad range of scale. "Equations that describe cloud formation simply cannot be implemented in climate models," Nenes said. "We don’t have enough computing power -- and probably won’t for another 50 years. Yet somehow we still need to describe cloud formation accurately if we want to understand how humans are affecting climate."

Scientists have tried to predict cloud formation through empirical "parameterization" – techniques that rely on empirical information or correlations, such as comparing the number of particles in the atmosphere with the number of cloud droplets. "Yet there’s no real physical link, no causality between those two numbers," Nenes said.

To address both the lack of computer power and shortcomings of existing parameterization, Nenes and his research team have developed simple, physics-based equations that link aerosol particles and cloud droplets. Then these offline equations can be scaled up to a global level, providing accurate predictions literally thousands of times faster than more detailed models.

For example, by determining an algebraic equation for maximum supersaturation (the point in a cloud where all droplets that could form, have formed), it is then possible to calculate how many cloud droplets can form. That droplet number reveals the optical (reflective) properties of a cloud, as well as its potential for forming rain.

This modeling method has proven successful in two field tests. In situ aircraft data was collected from cumulus clouds off the coast of Key West, Fla., in 2002, and from stratocumulus clouds near Monterrey, Calif., in 2003. Compared with this real-world data, predictions from Nenes’ model were accurate within 10 to 20 percent.

That was a pleasant surprise for the research team, which included Georgia Tech postdoctoral scholar Nicholas Meskhidze and graduate student Christos Fountoukis. "We never expected to capture the physics to that degree," Nenes explained. "We were hoping for a 50 percent accuracy rate."

Another key challenge in predicting climate change is to understand how aerosols’ chemistry affects cloud formation. Each particle has a different potential for forming a cloud drop, which depends on its composition, location and how long it has been in the atmosphere. Up to now, people have measured and averaged properties over long periods of time. "Yet particles are mixing and changing quickly," Nenes said. "If you don’t factor in the chemical aging of the aerosol, you can easily have a large error when predicting cloud droplet number."

Working with Gregory Roberts at the Scripps Institution of Oceanography, Nenes developed a new type of cloud condensation nuclei (CCN) counter. This instrument exposes different aerosol particles to a supersaturation, which enables researchers to determine: 1) how many droplets form and 2) how long they take to form.

Providing fast, reliable measurements, this CCN counter can be used either on the ground or in an aircraft. "It gives us a much needed link for determining how different types of emissions will affect clouds formation," Nenes explained.

Nenes and Roberts have patented the CCN instrument, and a paper describing the technology will be published in an upcoming issue of Aerosol Science and Technology.

The CCN counter is being commercialized by Droplet Measurement Technologies in Boulder, Colo., and a number of research universities and government agencies have already placed orders. "There is also a great deal of interest from Asia," Nenes said, "Because of its economic boom, Asia has been generating considerable emissions, which are thought to have a major impact on local climate."

Both the new modeling method and CCN instrument have far-reaching applications for predicting climate change and precipitation patterns.

The indirect aerosol effect is counteracting greenhouse warming right now, but this will stop at some point, Nenes explained: "One of our goals as scientists is to figure out how long we’ll have this cooling effect so that we can respond to changes. Being able to predict climate change can help countries with sustainability – from agricultural planning to global emission policies."

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>