Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative take-off system could lead to safer, cleaner air travel

07.12.2004


A new approach to aircraft scheduling that uses computer models could allow a safe increase in airport throughput and reduce pollution.



The system under development would, for the first time, provide runway controllers with advice, based on state-of-the-art computer models, on the most efficient, safe sequence in which aircraft can take-off. Currently, runway controllers carry out their demanding job using their own observations and mental calculations, with limited reliance on technical aids.

The system is being designed to take factors such as aircraft size, speed and route into account. Large aircraft create more turbulence, for example, and so the aim is to group aircraft together by weight category. The system would also cover aircraft taxi-ing to the airport holding point, as well as those already waiting there. Responding quickly to changing circumstances, it would provide runway controllers with instant advice.


By minimising the amount of time aircraft spend on the ground with engines running, the system would also reduce noise and fuel pollution affecting people living close to airports, and could save thousands of litres of aviation fuel.

The research could lead to a computer-based system that helps runway controllers make quick but effective scheduling decisions, generating a 10-25% reduction in delays affecting aircraft waiting for clearance to take-off.

The work is being carried out by computer scientists at the University of Nottingham with funding from the Engineering and Physical Sciences Research Council (EPSRC) and National Air Traffic Services Ltd (NATS).

The research project is being run in conjunction with Heathrow Airport Air Traffic Control and will be designed to deal with ‘real world’ constraints (e.g. runway controller workloads and holding point structure).

Professor Edmund Burke of the University’s School of Computer Science and Information Technology says: “Reducing airport bottlenecks is good for passengers, airlines, the environment and people living close to airports. Our aim is to cut runway controllers’ workloads while increasing safety as demand for air travel grows.”

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>