Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling Framework Projects Significant Increase in Ozone-Related Deaths

08.11.2004


A new modeling framework suggests that climate change alone could cause a 4.5% increase in the number of summer ozone-related deaths across the New York metropolitan region by the year 2050, according to a study published today in the November issue of the peer-reviewed journal Environmental Health Perspectives (EHP). When population growth and projected growth in greenhouse gas emissions are factored in, the model predicts a 59.9% increase in summer ozone-related deaths by 2050.

The larger projected impact is largely caused by expected growth in the populations most at risk. Numerous earlier studies have linked ozone with hospital admissions and emergency visits for respiratory conditions. Other recent studies have drawn a link between elevated ozone levels and mortality among residents in large cities.

This modeling framework provides a potentially useful new tool for assessing the health risks of climate change in specific regions. The framework was developed to better assess potential health effects of air pollution resulting from climate change. It comprises a global climate model from the National Aeronautics and Space Administration, a model from the National Center for Atmospheric Research, and the Community Multiscale Air Quality Atmospheric Chemistry Model.



With the new tool, the researchers simulated hourly regional meteorologic conditions and ozone levels for five consecutive summers in the 2020s, the 2050s, and the 2080s across the 31-county New York Metropolitan Area. The area incorporates the nation’s largest city, parts of northern New York, Long Island, southern Connecticut, and northeastern/central New Jersey, including an estimated 1,600 cities, towns, and villages.

“Under a variety of assumptions, climate change alone could increase regional summer ozone-related mortality by a median 4.5% in the 2050s compared with the 1990s,” the study authors write. “These assumptions do not include the effect of projected population growth. When a more fully elaborated picture of the likely regional future was evaluated, much greater changes in summer mortality are projected: Regional summer ozone-related mortality would increase by a median 59.9% in the 2050s compared with the 1990s.”

“This study takes existing climate model outputs and overlays them to project the likely future-year ozone concentrations for a specific region. By doing this, the authors were able to project a potentially significant public health impact,” said Dr. Jim Burkhart, science editor for EHP.

The lead author of the study was Kim Knowlton of the Mailman School of Public Health at Columbia University in New York. Other authors were Joyce E. Rosenthal, Christian Hogrefe, Barry Lynn, Stuart Gaffin, Richard Goldberg, Cynthia Rosenzweig, Kevin Civerolo, Jia-Yeong Ku, and Patrick L. Kinney.

EHP is published by the National Institute of Environmental Health Sciences, part of the U.S. Department of Health and Human Services. EHP became an Open Access journal in January 2004.

| newswise
Further information:
http://www.niehs.nih.gov
http://www.ehponline.org

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>