Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling Framework Projects Significant Increase in Ozone-Related Deaths

08.11.2004


A new modeling framework suggests that climate change alone could cause a 4.5% increase in the number of summer ozone-related deaths across the New York metropolitan region by the year 2050, according to a study published today in the November issue of the peer-reviewed journal Environmental Health Perspectives (EHP). When population growth and projected growth in greenhouse gas emissions are factored in, the model predicts a 59.9% increase in summer ozone-related deaths by 2050.

The larger projected impact is largely caused by expected growth in the populations most at risk. Numerous earlier studies have linked ozone with hospital admissions and emergency visits for respiratory conditions. Other recent studies have drawn a link between elevated ozone levels and mortality among residents in large cities.

This modeling framework provides a potentially useful new tool for assessing the health risks of climate change in specific regions. The framework was developed to better assess potential health effects of air pollution resulting from climate change. It comprises a global climate model from the National Aeronautics and Space Administration, a model from the National Center for Atmospheric Research, and the Community Multiscale Air Quality Atmospheric Chemistry Model.



With the new tool, the researchers simulated hourly regional meteorologic conditions and ozone levels for five consecutive summers in the 2020s, the 2050s, and the 2080s across the 31-county New York Metropolitan Area. The area incorporates the nation’s largest city, parts of northern New York, Long Island, southern Connecticut, and northeastern/central New Jersey, including an estimated 1,600 cities, towns, and villages.

“Under a variety of assumptions, climate change alone could increase regional summer ozone-related mortality by a median 4.5% in the 2050s compared with the 1990s,” the study authors write. “These assumptions do not include the effect of projected population growth. When a more fully elaborated picture of the likely regional future was evaluated, much greater changes in summer mortality are projected: Regional summer ozone-related mortality would increase by a median 59.9% in the 2050s compared with the 1990s.”

“This study takes existing climate model outputs and overlays them to project the likely future-year ozone concentrations for a specific region. By doing this, the authors were able to project a potentially significant public health impact,” said Dr. Jim Burkhart, science editor for EHP.

The lead author of the study was Kim Knowlton of the Mailman School of Public Health at Columbia University in New York. Other authors were Joyce E. Rosenthal, Christian Hogrefe, Barry Lynn, Stuart Gaffin, Richard Goldberg, Cynthia Rosenzweig, Kevin Civerolo, Jia-Yeong Ku, and Patrick L. Kinney.

EHP is published by the National Institute of Environmental Health Sciences, part of the U.S. Department of Health and Human Services. EHP became an Open Access journal in January 2004.

| newswise
Further information:
http://www.niehs.nih.gov
http://www.ehponline.org

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>