Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling Framework Projects Significant Increase in Ozone-Related Deaths

08.11.2004


A new modeling framework suggests that climate change alone could cause a 4.5% increase in the number of summer ozone-related deaths across the New York metropolitan region by the year 2050, according to a study published today in the November issue of the peer-reviewed journal Environmental Health Perspectives (EHP). When population growth and projected growth in greenhouse gas emissions are factored in, the model predicts a 59.9% increase in summer ozone-related deaths by 2050.

The larger projected impact is largely caused by expected growth in the populations most at risk. Numerous earlier studies have linked ozone with hospital admissions and emergency visits for respiratory conditions. Other recent studies have drawn a link between elevated ozone levels and mortality among residents in large cities.

This modeling framework provides a potentially useful new tool for assessing the health risks of climate change in specific regions. The framework was developed to better assess potential health effects of air pollution resulting from climate change. It comprises a global climate model from the National Aeronautics and Space Administration, a model from the National Center for Atmospheric Research, and the Community Multiscale Air Quality Atmospheric Chemistry Model.



With the new tool, the researchers simulated hourly regional meteorologic conditions and ozone levels for five consecutive summers in the 2020s, the 2050s, and the 2080s across the 31-county New York Metropolitan Area. The area incorporates the nation’s largest city, parts of northern New York, Long Island, southern Connecticut, and northeastern/central New Jersey, including an estimated 1,600 cities, towns, and villages.

“Under a variety of assumptions, climate change alone could increase regional summer ozone-related mortality by a median 4.5% in the 2050s compared with the 1990s,” the study authors write. “These assumptions do not include the effect of projected population growth. When a more fully elaborated picture of the likely regional future was evaluated, much greater changes in summer mortality are projected: Regional summer ozone-related mortality would increase by a median 59.9% in the 2050s compared with the 1990s.”

“This study takes existing climate model outputs and overlays them to project the likely future-year ozone concentrations for a specific region. By doing this, the authors were able to project a potentially significant public health impact,” said Dr. Jim Burkhart, science editor for EHP.

The lead author of the study was Kim Knowlton of the Mailman School of Public Health at Columbia University in New York. Other authors were Joyce E. Rosenthal, Christian Hogrefe, Barry Lynn, Stuart Gaffin, Richard Goldberg, Cynthia Rosenzweig, Kevin Civerolo, Jia-Yeong Ku, and Patrick L. Kinney.

EHP is published by the National Institute of Environmental Health Sciences, part of the U.S. Department of Health and Human Services. EHP became an Open Access journal in January 2004.

| newswise
Further information:
http://www.niehs.nih.gov
http://www.ehponline.org

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>