Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Modeling Framework Projects Significant Increase in Ozone-Related Deaths


A new modeling framework suggests that climate change alone could cause a 4.5% increase in the number of summer ozone-related deaths across the New York metropolitan region by the year 2050, according to a study published today in the November issue of the peer-reviewed journal Environmental Health Perspectives (EHP). When population growth and projected growth in greenhouse gas emissions are factored in, the model predicts a 59.9% increase in summer ozone-related deaths by 2050.

The larger projected impact is largely caused by expected growth in the populations most at risk. Numerous earlier studies have linked ozone with hospital admissions and emergency visits for respiratory conditions. Other recent studies have drawn a link between elevated ozone levels and mortality among residents in large cities.

This modeling framework provides a potentially useful new tool for assessing the health risks of climate change in specific regions. The framework was developed to better assess potential health effects of air pollution resulting from climate change. It comprises a global climate model from the National Aeronautics and Space Administration, a model from the National Center for Atmospheric Research, and the Community Multiscale Air Quality Atmospheric Chemistry Model.

With the new tool, the researchers simulated hourly regional meteorologic conditions and ozone levels for five consecutive summers in the 2020s, the 2050s, and the 2080s across the 31-county New York Metropolitan Area. The area incorporates the nation’s largest city, parts of northern New York, Long Island, southern Connecticut, and northeastern/central New Jersey, including an estimated 1,600 cities, towns, and villages.

“Under a variety of assumptions, climate change alone could increase regional summer ozone-related mortality by a median 4.5% in the 2050s compared with the 1990s,” the study authors write. “These assumptions do not include the effect of projected population growth. When a more fully elaborated picture of the likely regional future was evaluated, much greater changes in summer mortality are projected: Regional summer ozone-related mortality would increase by a median 59.9% in the 2050s compared with the 1990s.”

“This study takes existing climate model outputs and overlays them to project the likely future-year ozone concentrations for a specific region. By doing this, the authors were able to project a potentially significant public health impact,” said Dr. Jim Burkhart, science editor for EHP.

The lead author of the study was Kim Knowlton of the Mailman School of Public Health at Columbia University in New York. Other authors were Joyce E. Rosenthal, Christian Hogrefe, Barry Lynn, Stuart Gaffin, Richard Goldberg, Cynthia Rosenzweig, Kevin Civerolo, Jia-Yeong Ku, and Patrick L. Kinney.

EHP is published by the National Institute of Environmental Health Sciences, part of the U.S. Department of Health and Human Services. EHP became an Open Access journal in January 2004.

| newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>