Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ’green’ side of pumpkins - purging pollution from contaminated soils

20.10.2004


While parents and youngsters are busy carving jack-o-lanterns in preparation for Halloween, Canadian scientists are hard at work on another way to use the popular yellow-orange plant. New research shows that pumpkins can clean up soil contaminated with DDT and other pollutants.



In a greenhouse study, members of the Cucurbita pepo species — including pumpkin and zucchini — demonstrated the ability to remove DDT from soil, suggesting a potential "green" technique for cleaning up sites contaminated with DDT, PCBs and other harmful compounds.

The report is scheduled to appear in the Nov. 15 edition of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.


DDT was applied widely as an insecticide in North America until it was banned in 1972. Some developing nations still use DDT for protection against typhus and malaria, and it endures for long periods of time in the environment, posing a potential health threat to humans and animals.

"Persistent organic pollutants" like DDT, PCBs and dioxins are difficult to remove from soils because they are not water soluble, and the difficulty increases with the passage of time. To clean up contaminated sites, it is typically necessary to excavate the soil and place it in a landfill or burn it in a high-temperature incinerator.

"Phytoremediation offers a ‘green’ solution to cleaning up contaminated sites," says Ken Reimer, Ph.D., a chemist at the Royal Military College of Canada and corresponding author of the paper.

Phytoremediation broadly refers to the use of plants to take up contaminants from the soil. In the case of pumpkins, rather than being eaten, both the plants and their vines would be cut down after they ripen and then composted to reduce their volume before being disposed of in landfills or incinerated. "Our research has shown that members of the Cucurbita pepo species, including pumpkins, are particularly effective in this regard," Reimer says.

Reimer and his coworkers, Alissa Lunney and Barbara Zeeb, conducted a greenhouse study of five plant species: rye grass, tall fescue, alfalfa, zucchini and pumpkin. The researchers used soil from a site in the Canadian Arctic where DDT had been sprayed to protect workers from mosquitoes. "The cold temperatures meant that the contamination was virtually identical to the technical grade DDT mixture that had originally been used," Reimer says. "We could therefore examine the ability of [the plants] to ‘suck’ the DDT out of the soil that had been contaminated with DDT for several decades."

Pumpkins took up the largest amount of DDT, while another member of the Cucurbita pepo species — zucchini — came in second at about half the pumpkins’ accumulation. This success could be due to the large mass and volume found in members of this species, the researchers suggest.

Phytoremediation with pumpkins would be most useful at small sites where cleanup is less urgent, Reimer says. Ideally, the plants would grow undisturbed until they are harvested — for disposal rather than for food — at the end of the season, and the process could be repeated for several planting cycles.

While the technique is not likely to replace traditional methods any time soon, phytoremediation could offer an inexpensive and environmentally friendly alternative, especially in small communities and developing countries where money is a major obstacle, Reimer says.

In a more recent unpublished study, the researchers found that pumpkins may also be useful in cleaning up soils contaminated with PCBs — another widespread pollutant that persists in the environment.

Reimer and his colleagues are also trying to identify other plants that can do the same job, including non-edible crops to help ensure that local wildlife don’t eat the contaminated plants.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>