Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The ’green’ side of pumpkins - purging pollution from contaminated soils


While parents and youngsters are busy carving jack-o-lanterns in preparation for Halloween, Canadian scientists are hard at work on another way to use the popular yellow-orange plant. New research shows that pumpkins can clean up soil contaminated with DDT and other pollutants.

In a greenhouse study, members of the Cucurbita pepo species — including pumpkin and zucchini — demonstrated the ability to remove DDT from soil, suggesting a potential "green" technique for cleaning up sites contaminated with DDT, PCBs and other harmful compounds.

The report is scheduled to appear in the Nov. 15 edition of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

DDT was applied widely as an insecticide in North America until it was banned in 1972. Some developing nations still use DDT for protection against typhus and malaria, and it endures for long periods of time in the environment, posing a potential health threat to humans and animals.

"Persistent organic pollutants" like DDT, PCBs and dioxins are difficult to remove from soils because they are not water soluble, and the difficulty increases with the passage of time. To clean up contaminated sites, it is typically necessary to excavate the soil and place it in a landfill or burn it in a high-temperature incinerator.

"Phytoremediation offers a ‘green’ solution to cleaning up contaminated sites," says Ken Reimer, Ph.D., a chemist at the Royal Military College of Canada and corresponding author of the paper.

Phytoremediation broadly refers to the use of plants to take up contaminants from the soil. In the case of pumpkins, rather than being eaten, both the plants and their vines would be cut down after they ripen and then composted to reduce their volume before being disposed of in landfills or incinerated. "Our research has shown that members of the Cucurbita pepo species, including pumpkins, are particularly effective in this regard," Reimer says.

Reimer and his coworkers, Alissa Lunney and Barbara Zeeb, conducted a greenhouse study of five plant species: rye grass, tall fescue, alfalfa, zucchini and pumpkin. The researchers used soil from a site in the Canadian Arctic where DDT had been sprayed to protect workers from mosquitoes. "The cold temperatures meant that the contamination was virtually identical to the technical grade DDT mixture that had originally been used," Reimer says. "We could therefore examine the ability of [the plants] to ‘suck’ the DDT out of the soil that had been contaminated with DDT for several decades."

Pumpkins took up the largest amount of DDT, while another member of the Cucurbita pepo species — zucchini — came in second at about half the pumpkins’ accumulation. This success could be due to the large mass and volume found in members of this species, the researchers suggest.

Phytoremediation with pumpkins would be most useful at small sites where cleanup is less urgent, Reimer says. Ideally, the plants would grow undisturbed until they are harvested — for disposal rather than for food — at the end of the season, and the process could be repeated for several planting cycles.

While the technique is not likely to replace traditional methods any time soon, phytoremediation could offer an inexpensive and environmentally friendly alternative, especially in small communities and developing countries where money is a major obstacle, Reimer says.

In a more recent unpublished study, the researchers found that pumpkins may also be useful in cleaning up soils contaminated with PCBs — another widespread pollutant that persists in the environment.

Reimer and his colleagues are also trying to identify other plants that can do the same job, including non-edible crops to help ensure that local wildlife don’t eat the contaminated plants.

Michael Bernstein | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>