Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery is a step towards pollution-free cars

15.10.2004


Scientists have made a world-first discovery which is a step towards using environmentally-friendly hydrogen to power our cars.



A team from the Universities of Newcastle upon Tyne and Liverpool in the UK, who report their findings in the prestigious academic journal, Science, have found a safe way of storing and releasing hydrogen to produce energy. They do this using nanoporous materials, which have tiny pores that are one hundred-thousandth (100,00th) the thickness of a sheet of paper.

Hydrogen has been investigated for a long time as a replacement for petrol, amid worries over the long-term availability of fossil fuels. It is also an environmentally-friendly alternative, as it produces only water rather than the ‘greenhouse gas’, carbon dioxide. However, scientists and others have been baffled for a long time about how to store the substance – which is a gas and so contains less energy in a given volume than the liquid petrol - safely and efficiently.


In his January 2003 State of the Union Address, President Bush announced the Hydrogen Fuel Initiative (1) – “so that America can lead the world in developing clean, hydrogen-powered automobiles.” Hydrogen storage technology - the ability to carry enough hydrogen on-board a vehicle to enable 300-mile vehicle range - is critical to the success of the President’s initiative. The UK Government is also very keen to exploit the hydrogen economy.

At the present time, no existing hydrogen storage technology meets the challenging performance required to make hydrogen-powered automobiles competitive with traditional vehicles. New and innovative ideas are needed.

The Liverpool and Newcastle researchers have found a workable method of injecting the gas at high pressure into the tiny pores - of ten to the minus nine metres in size - in specially-designed materials to give a dense form of hydrogen. They then reduce the pressure within the material in order to store the captured hydrogen safely. Heat can be applied to release the hydrogen as energy, on which a car could potentially run.

Professor Mark Thomas, of Newcastle University’s Northern Carbon Research Laboratories in the School of Natural Sciences, a member of the research team, said: “This is a proof of principle that we can trap hydrogen gas in a porous material and release it when required. However, if developed further, this method would have the potential to be applied to powering cars or any generator supplying power. Although hydrogen-powered cars are likely to be decades away, our discovery brings this concept a step towards becoming reality. “Now that we have a mechanism that works, we can go on to design and build better porous framework materials for storing hydrogen, which may also be useful in industries that use gas separation techniques.”

Professor Matt Rosseinsky, of the University of Liverpool’s Department of Chemistry, said “Our new porous materials can capture hydrogen gas within their channels, like a molecular cat-flap. “After allowing the hydrogen molecule – the ‘cat - in, the structure closes shut behind it. The important point is that the hydrogen is loaded into the materials at high pressure but stored in them at a much lower pressure - a unique behaviour. This basic scientific discovery may have significant ramifications for hydrogen storage and other technologies that rely on the controlled entrapment and release of small molecules.”

Claire Jordan | alfa
Further information:
http://www.ncl.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>