Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery is a step towards pollution-free cars


Scientists have made a world-first discovery which is a step towards using environmentally-friendly hydrogen to power our cars.

A team from the Universities of Newcastle upon Tyne and Liverpool in the UK, who report their findings in the prestigious academic journal, Science, have found a safe way of storing and releasing hydrogen to produce energy. They do this using nanoporous materials, which have tiny pores that are one hundred-thousandth (100,00th) the thickness of a sheet of paper.

Hydrogen has been investigated for a long time as a replacement for petrol, amid worries over the long-term availability of fossil fuels. It is also an environmentally-friendly alternative, as it produces only water rather than the ‘greenhouse gas’, carbon dioxide. However, scientists and others have been baffled for a long time about how to store the substance – which is a gas and so contains less energy in a given volume than the liquid petrol - safely and efficiently.

In his January 2003 State of the Union Address, President Bush announced the Hydrogen Fuel Initiative (1) – “so that America can lead the world in developing clean, hydrogen-powered automobiles.” Hydrogen storage technology - the ability to carry enough hydrogen on-board a vehicle to enable 300-mile vehicle range - is critical to the success of the President’s initiative. The UK Government is also very keen to exploit the hydrogen economy.

At the present time, no existing hydrogen storage technology meets the challenging performance required to make hydrogen-powered automobiles competitive with traditional vehicles. New and innovative ideas are needed.

The Liverpool and Newcastle researchers have found a workable method of injecting the gas at high pressure into the tiny pores - of ten to the minus nine metres in size - in specially-designed materials to give a dense form of hydrogen. They then reduce the pressure within the material in order to store the captured hydrogen safely. Heat can be applied to release the hydrogen as energy, on which a car could potentially run.

Professor Mark Thomas, of Newcastle University’s Northern Carbon Research Laboratories in the School of Natural Sciences, a member of the research team, said: “This is a proof of principle that we can trap hydrogen gas in a porous material and release it when required. However, if developed further, this method would have the potential to be applied to powering cars or any generator supplying power. Although hydrogen-powered cars are likely to be decades away, our discovery brings this concept a step towards becoming reality. “Now that we have a mechanism that works, we can go on to design and build better porous framework materials for storing hydrogen, which may also be useful in industries that use gas separation techniques.”

Professor Matt Rosseinsky, of the University of Liverpool’s Department of Chemistry, said “Our new porous materials can capture hydrogen gas within their channels, like a molecular cat-flap. “After allowing the hydrogen molecule – the ‘cat - in, the structure closes shut behind it. The important point is that the hydrogen is loaded into the materials at high pressure but stored in them at a much lower pressure - a unique behaviour. This basic scientific discovery may have significant ramifications for hydrogen storage and other technologies that rely on the controlled entrapment and release of small molecules.”

Claire Jordan | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>