Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pro-environmental technologies for the de-inking of wastepaper

25.08.2004


VTT Technical Research Centre of Finland has developed new technologies for further use of wastepaper in an optimal and environmentally acceptable way. The particular problem in this process was the mixing of digitally printed paper and normal household wastepaper in the collection phase, which deteriorates the de-inking result. The new technologies improve the recyclability of fibres and decrease the amount of unexploitable fibre. These alternative technologies can make the conventional de-inking processes more efficient and even replace them.



The new technologies, high-power ultrasound processing and magnetic separation, enable printing ink to be separated from fibres with lower amounts of chemicals in comparison to current technologies. This environmentally friendly process saves fibres, improves the recyclability of them and decreases the amount of unexploitable fibres, the so-called zero fibres.

Conventional methods, generally flotation and/or washing, are well-suited to the processing of household wastepaper for the time being. However, increased amounts of digitally printed paper in household wastepaper will significantly change the situation in terms of both ink composition and adhesion. In de-inking it is essential that the size of printing ink particles, or the non-uniformity of ink, is correct when de-inking is performed by flotating.


Digitally printed ink detaches in large particles, but high-power ultrasound can be used for splitting ink particles into a size suitable for the process and promoting the detachment of ink from the fibres. On the other hand, several printing ink qualities of office wastepaper contain ferromagnetic, or iron-bearing, components and these are thus easily separated from the de-inked pulp through magnetic separation and lower amounts of chemicals.

Two patent applications have been filed for the technologies developed in the project. The development of pilot-scale equipment is now being continued as part of the factory process, and the objective of this work is a low chemical and energy saving de-inking process for office wastepaper, applying the magnetic separation and ultrasound treatment technology. The analysis methods developed in the project are also well-suited to the quality control of the de-inking process and de-inked pulp.

The high-power ultrasound equipment and magnetic separator will bring distinct quality improvements, particularly in the manufacture of soft tissues. Thanks to these new technologies, it will be possible for equipment manufacturers to launch new products on the market and de-inking plants will be able to improve their de-inking process according to changing raw materials.

VTT’s co-operation partners in this project have been , TEKES, Metso Paper, Raisio Chemicals (currently CIBA Speciality Chemicals), UPM, MetsaeTissue, Paperinkeraeys, SICPA, PQ Finland, Norem Magnets, Finnsonic, and other players in the forest cluster.

VTT co-ordinates Finnish participation in the EU’s COST E46 project called "Improvements in the Understanding and Use of De-Inking Technology".

Pia Qvintus-Leino | alfa
Further information:
http://www.vtt.fi

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>