Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pro-environmental technologies for the de-inking of wastepaper

25.08.2004


VTT Technical Research Centre of Finland has developed new technologies for further use of wastepaper in an optimal and environmentally acceptable way. The particular problem in this process was the mixing of digitally printed paper and normal household wastepaper in the collection phase, which deteriorates the de-inking result. The new technologies improve the recyclability of fibres and decrease the amount of unexploitable fibre. These alternative technologies can make the conventional de-inking processes more efficient and even replace them.



The new technologies, high-power ultrasound processing and magnetic separation, enable printing ink to be separated from fibres with lower amounts of chemicals in comparison to current technologies. This environmentally friendly process saves fibres, improves the recyclability of them and decreases the amount of unexploitable fibres, the so-called zero fibres.

Conventional methods, generally flotation and/or washing, are well-suited to the processing of household wastepaper for the time being. However, increased amounts of digitally printed paper in household wastepaper will significantly change the situation in terms of both ink composition and adhesion. In de-inking it is essential that the size of printing ink particles, or the non-uniformity of ink, is correct when de-inking is performed by flotating.


Digitally printed ink detaches in large particles, but high-power ultrasound can be used for splitting ink particles into a size suitable for the process and promoting the detachment of ink from the fibres. On the other hand, several printing ink qualities of office wastepaper contain ferromagnetic, or iron-bearing, components and these are thus easily separated from the de-inked pulp through magnetic separation and lower amounts of chemicals.

Two patent applications have been filed for the technologies developed in the project. The development of pilot-scale equipment is now being continued as part of the factory process, and the objective of this work is a low chemical and energy saving de-inking process for office wastepaper, applying the magnetic separation and ultrasound treatment technology. The analysis methods developed in the project are also well-suited to the quality control of the de-inking process and de-inked pulp.

The high-power ultrasound equipment and magnetic separator will bring distinct quality improvements, particularly in the manufacture of soft tissues. Thanks to these new technologies, it will be possible for equipment manufacturers to launch new products on the market and de-inking plants will be able to improve their de-inking process according to changing raw materials.

VTT’s co-operation partners in this project have been , TEKES, Metso Paper, Raisio Chemicals (currently CIBA Speciality Chemicals), UPM, MetsaeTissue, Paperinkeraeys, SICPA, PQ Finland, Norem Magnets, Finnsonic, and other players in the forest cluster.

VTT co-ordinates Finnish participation in the EU’s COST E46 project called "Improvements in the Understanding and Use of De-Inking Technology".

Pia Qvintus-Leino | alfa
Further information:
http://www.vtt.fi

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>