Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goals unlikely to protect Gulf of Mexico shrimp industry

05.08.2004


Research from the University of Michigan shows that the current federal plan to reduce the "dead zone" in the Gulf of Mexico may not be enough to protect the region’s half billion dollar a year shrimp industry.




Researchers from U-M, Louisiana State University, and Limnotech Inc, an Ann Arbor-based firm, used three different models to analyze oxygen depletion and to answer two key questions: Is the expanded dead zone human-caused? Will a proposed goal of 30 percent nitrogen load reduction be sufficient to reduce the zone to below 5,000 square kilometers, as agreed to by federal, state and tribal leaders in 2001?

The hypoxic region is an area where water lacks sufficient oxygen to sustain most marine life, and in the Gulf of Mexico it is caused by excess nitrogen---largely runoff from mid-west agriculture, said Donald Scavia, director of the Michigan Sea Grant College Program and professor in the School of Natural Resources and Environment.


Scavia’s paper, published in the June edition of the journal Estuaries, found that the 30 percent nitrogen load reduction will not likely shrink the dead zone to the desired 5,000 square kilometers. According to the paper, the nitrogen load must be reduced by 40 percent to 45 percent to achieve that reduction in most years.

Comparing the results of the three models also confirmed anecdotal and sparse historic data indicating that large-scale hypoxia did not occur before the mid-1970s and supports the notion that tripling the nitrogen load over the past 50 years has led to the heightened Gulf of Mexico hypoxia problem.

Confidence in the model analysis was bolstered this year as the operational ecological forecast from the National Oceanic and Atmospheric Administration, based on Scavia’s model, predicted this summer’s dead zone to be 5,400 square miles. Measurements from the NOAA-supported surveys by the Louisiana Universities Marine Consortium documented the zone to be 5,800 square miles, or about the size of Connecticut.

Hypoxia occurs when increased nitrogen runoff causes algae blooms, which sink into bottom waters and are decomposed by bacteria, a process that consumes oxygen. The warm fresh water from the Mississippi and Atchafalaya rivers also layer atop the colder salty Gulf waters, preventing atmospheric oxygen from getting to the bottom. As oxygen is consumed faster than it can be supplied, concentrations decrease below the critical 2 mg/l that defines hypoxia and has resulted in collapses of fisheries in other parts of the world. It’s important to reduce the size of the dead zone in the Gulf because the area is important habitat for shrimp and other important fin and shellfish.

Hypoxia and other problems caused by excess nitrogen load are not unique to the Gulf of Mexico. Resent NOAA reports indicate that this problem occurs in more than 50 percent of US estuaries and the United Nations Environment Program has identified nitrogen overload and its contribution to the rapid growth of oxygen-starved zones in some coastal waters as an emerging global issue.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>