Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Tackle Projects in Yellowstone National Park

21.07.2004


Here is a list of Montana State University researchers who are conducting studies in Yellowstone National Park.



Yellowstone wildlife

Scott Creel, ecology professor, monitors elk-wolf interactions and trends in the greater Yellowstone ecosystem. http://www.montana.edu/wwwbi/staff/creel/creel.html#Creel’s
See news story at http://www.montana.edu/commserv/csnews/nwview.php?article=352



Robert Garrott, ecology professor, examines predator-prey dynamics in a wolf-ungulate (elk) relationship. Additionally, he is studying bison demography in relation to roads that are groomed for winter snowmobilers’ travel. http://www.homepage.montana.edu/~rgarrott/wolfungulate/index.htm.
See news stories at http://www.montana.edu/commserv/csnews/nwview.php?article=1495

Marcel Huijser, Western Transportation Institute researcher, is testing an animal warning system for motorists who drive along Highway 191 in Yellowstone National Park. The animal detection system detects large animals as they approach the road on a one-mile stretch of U.S. 191, 50 miles south of Belgrade. When a large animal like an elk breaks the high-frequency radio beam, warning signs flash. http://www.coe.montana.edu/wti/.

Carl Wambolt, animal and range sciences, studies shrub ecology and management and the role of shrubs in range ecosystems. He examines the shrub-ungulate relationship in the Northern Yellowstone winter range. http://www.animalrange.montana.edu/faculty/faculty-wambolt.htm.

Yellowstone microbes

Keith Cooksey, microbiology professor, searches the hot springs of Yellowstone National Park for microbes that exist in extremely hot environments. The microbes could be used to help clean CO2 emissions from smokestacks since the organisms feed on CO2 from the hot springs. http://www.montana.edu/wwwmb/homepages/kcooksey.htm.

Gill Geesey, microbiology, examines growth rates of bacteria in subsurface environments, specifically of bacteria in hydrothermal vents at the bottom of Mary Bay of Yellowstone Lake. He scuba dives to the site to place artificial surfaces for these bacteria to colonize at the orifice of vents that emit hydrogen sulfide, the primary energy source for this group of bacteria. He returns to the vents at intervals and retrieves the surfaces, preserves the bacteria that have attached, and examines them under the microscope at MSU. He hypothesizes that the growth rates are dependent upon the concentrations of hydrogen sulfide; he tests this at different vents. http://www.erc.montana.edu/Res-Lib99-SW/people/faculty/gill.htm.

Timothy McDermott, environmental microbiologist, examines microbial communities inhabiting thermal springs. These organisms derive their energy from inorganic nutrients such iron, hydrogen, sulfide, and arsenite. http://landresources.montana.edu/Faculty/McDermott.htm.
See news story at http://www.montana.edu/commserv/csnews/nwview.php?article=36

Kathy Sheehan, microbiology, compiled a guide to the microbes of Yellowstone National Park, "Seen and Unseen: Discovering the Microbes of Yellowstone," to be published September, 2004 by The Globe Pequot Press. The highly illustrated book explains some the many microorganisms that inhabit the park and how they are important in Yellowstone’s ecology.
See news story at http://www.montana.edu/commserv/csnews/nwview.php?article=629

David Ward, land resources and environmental sciences, is researching microbial diversity, ecology and evolution. In Yellowstone, he studies molecular analysis of composition, structure and function of hot spring microbial mat communities used as natural models. http://landresources.montana.edu/dward.
See news story at http://www.montana.edu/commserv/csnews/nwview.php?article=1274

Mark Young, virologist/microbiologist and co-director of the Thermal Biology Institute at MSU, is researching viruses found in Yellowstone’s acidic (pH <3>0) high temperature (>80C) environments to understand biochemical adaptations to life at high temperature and to answer questions of the evolution of earth’s early life. http://www.plantsciences.montana.edu/Faculty/young.htm.
See news story at http://www.montana.edu/commserv/csnews/nwview.php?article=1711

Yellowstone plants

Duncan Patten, Big Sky Institute researcher, is studying effects of human activities on riparian ecosystems that link the altitudinal zones together. Because ecosystems vary in their resistance and resiliency to disturbance, resource management decisions should be based on information about the response of the systems to types of perturbation. Types of perturbation studied by Duncan’s group include recreation, fire, stream diversion, groundwater withdrawal and potential facilities construction. http://www.bsi.montana.edu/web/web

Lisa Rew, land resources and environmental sciences professor of plant ecology, is interested in the spatial distribution and dynamics of non-native plant populations and how to detect, map and model such populations. In the northern range of Yellowstone, she has developed a sampling methodology to survey for non-native plants within natural ecosystems. These data are used to make predictive maps of plant occurrence over the whole northern range. http://landresources.montana.edu/rew.

Richard Stout, plant sciences, studies hot springs panic grass, common in geyser basins throughout Yellowstone. The main goal of the research is to uncover the biological processes behind the plant’s remarkable ability to tolerate hot, acidic soils in Yellowstone. http://www.plantsciences.montana.edu/Faculty/stout.htm.
See news story at http://www.montana.edu/commserv/csnews/nwview.php?article=629

Yellowstone fish

Billie Kerans, ecology professor, explores the ecologies of aquatic invasive species (New Zealand mud snail, Potamopyrgus antipodarum; salmonid whirling disease parasite, Myxobolus cerebralis) in aquatic ecosystems of the park. http://www.montana.edu/wwwbi/staff/kerans/kerans.html.
See news story at http://www.montana.edu/commserv/csnews/nwview.php?article=1407

Joseph Shaw, electrical computer engineering professor, will fly over Yellowstone Lake to count non-native lake trout using lidar, laser radar, to detect the numbers of fish and areas they are most prevalent. http://www.coe.montana.edu/ee/jshaw/index.htm.

Yellowstone climate and land use

Lisa Graumlich, Big Sky Institute director, seeks to understand the interaction between climate variability and ecosystem processes, especially fire. She uses tree-ring records to reconstruct the history of drought and fire over the last 300 to 1,000 yrs. The records reveal the importance of long-term (>10 year) dry and wet periods in shaping the forest landscape of the Greater Yellowstone Ecosystem. http://bsi.montana.edu/web/web/template/ViewArticle.vm/articleid/15579.

Andy Hansen, ecology professor, is hoping to establish standards for assessing the current and long-term ecological condition of park resources. A goal is to develop protocols for the monitoring of ecosystem components which function as indicators, or "vital signs," of ecosystem health. Land use activities surrounding park borders can significantly influence the status of ecological condition and functioning within parks. http://www.homepage.montana.edu/~hansen/documents/currentr2004/dani1.htm.
See news story at http://www.montana.edu/commserv/csnews/nwview.php?article=143

| newswise
Further information:
http://www.montana.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>