Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find evidence that sea turtles navigate with magnetic maps

29.04.2004


Among the most accomplished navigators in the animal kingdom, sea turtles often migrate across thousands of miles of open ocean to arrive at specific feeding and nesting sites. How they do so, however, has mystified biologists for over a century.



Now, new findings by a research team headed by Drs. Kenneth and Catherine Lohmann, marine biologists at the University of North Carolina at Chapel Hill, indicate that the navigational ability of sea turtles is based at least partly on a "magnetic map" -- a remarkable ability to read geographic position from subtle variations in the Earth’s magnetic field.

Previous work by the group showed that baby sea turtles can use magnetic information as a built-in compass to help guide them during their first migration across the Atlantic Ocean. Their latest studies reveal that older turtles use the Earth’s field in a different, far more sophisticated way: to help pinpoint their location relative to specific target areas, the scientists say. In effect, older turtles have a biological equivalent of a global positioning system (GPS), but the turtle version is based on magnetism.


A report on experiments with juvenile green turtles appears in the April 29 issue of Nature, a scientific journal. Besides the Lohmanns, authors are Timothy Swing, a recent UNC graduate, and biology professor Dr. Llew Ehrhart and graduate student Dean A. Bagley, both of the University of Central Florida.

Working and living for a summer on the coast near Cape Canaveral, Fla., the team built a special cube-shaped magnetic coil system almost the height of a two-story house. They used the coil to reproduce the magnetic fields that exist in different areas along the southeastern U.S. coast. They also placed a pool of water in the center of the coil so that they could expose the turtles to various magnetic fields while observing the direction in which they swam.

"We captured juvenile turtles using a 400-meter net stretched parallel to the coastline," Catherine Lohmann said. "Each turtle was placed in a cloth harness and tethered to a tracking device in the pool of water inside the magnetic coil.

"Half of the turtles swam in a magnetic field that exists at a location about 350 kilometers north of where they actually were, she said. "The other half swam in a field that exists at an equivalent distance to the south."

Animals exposed to the northern field responded by swimming south, the biologists found. Those in the southern field swam toward the north. Thus, in each case, turtles swam in the direction that would have taken them home if they had actually been at the place where each magnetic field exists.

"These results imply that turtles have a kind of magnetic map," Ken Lohmann said. "In other words, they can figure out where they are relative to home using magnetic field information. This is a far more complex use of the field than just having a magnetic compass that gives direction."

Last year, the UNC couple and one of their graduate students showed that spiny lobsters possess a similar map sense based on magnetism, he said. Their lobster experiments were the first to demonstrate that at least some invertebrate animals -- traditionally viewed as primitive biological underachievers -- possess navigational skills rivaling those of sea turtles, homing pigeons and other animals with backbones.

Before the work, many biologists assumed that complex navigational skills required a sophisticated brain and nervous system, which are absent in invertebrates.

"This is an exciting area of research right now," Lohmann said. "The picture that is emerging is that magnetic positioning systems are real, and the fact that they exist in both lobsters and sea turtles suggests that they may be widespread among animals."

Future research will examine precisely how the magnetic map is organized and what components of the field the turtles detect, he said.

The green turtle is an endangered species, and all turtles tested were released back into the sea unharmed.

"We want them to grow up and have lots of babies, so we’ll have turtles to study and enjoy forever," Lohmann said.

The UNC College of Arts and Sciences studies were funded by the National Science Foundation.

David Williamson | UNC News Services
Further information:
http://www.unc.edu/news/newsserv/archives/apr04/lohmann042804.html

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>