Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic fish study may aid cardiac research

30.03.2004


A species of fish that lives in Antarctic waters may hold clues to climate change and lead to advances in heart medicine. Researchers from the University of Birmingham and the British Antarctic Survey (BAS) are investigating the behaviour and physiology of the ’Antarctic Cod’ (Notothenia coriiceps) which became isolated from its warmer water cousins around 30 million years ago when the Antarctic circumpolar current was formed.



The olive-coloured fish has broad head and a narrow body. Whilst scientists know that it has ‘antifreeze’ in its blood and maintains a very low heart rate of less than 10 beats per minute, almost nothing is known about its behaviour or how it evolved to live in Antarctica’s extreme environment.

Discovering how the species may cope with predicted environmental change could help stock management or conservation of biodiversity within the Southern Ocean. In addition, it is possible that this research could lead to advances in medicine, especially relating to the problems experienced by human hearts when made to beat slowly (e.g. during surgery involving heart-lung bypass) or fail to beat fast enough (e.g. as a result of hypothermia in water or exposure on a mountain).


At the BAS Rothera Research Station on the Antarctic Peninsula small acoustic tags (called ’pingers’ due to the sound they make) are painlessly attached to the fish and the signals picked up by underwater microphones to monitor position, while data loggers measure heart rate. In the laboratory, Dr Hamish Campbell, monitors heart performance of the fish in a similar manner to that used with patients in a chest pain clinic. The unique combination of tracking and recording technology shows how the heart rate is controlled, and its response to changing demands due to feeding or a rise in temperature.

Physiologist Dr Stuart Egginton, from the University of Birmingham’s Medical School is leading the study: He says,

"This pioneering work will shed light on what animals get up to during the impending 24h darkness of a polar winter, how sensitive they are likely to be to climate change, and perhaps pave the way to understanding how we may prevent a cold heart from fluttering. We know enough to realise this ‘cod’ is different from those species living in the chilly North Sea, but not enough to be sure whether its strange characteristics are a response to the extreme cold, or because it is a descendant of unusual ancestors that has developed this way during its extended isolation from other fishes".

Dr Keiron Fraser from BAS says,
‘This is the first time that we’ve been able to find out how these fish live. Many Antarctic marine animals can live only within narrow temperature ranges and some die at around +5°C. Climate models predict a 2ºC rise on global sea temperatures over the next 100 years. One of the areas that we are trying to understand is how this fish species will respond or adapt to major environmental stresses, and how well it may survive the predicted environmental warming.’

Linda Capper | alfa
Further information:
http://www.antarctica.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>