Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient sands key to cleaning up industrial pollution

26.03.2004


CSIRO research has found unusual properties in ilmenite sand from the Murray Basin that could be harnessed to remove heavy metal and radioactive pollution from mine drainage, industrial waste streams, and ground water.




CSIRO scientists discovered the sand grains contains tiny holes, just nanometres across, but just the right size to potentially capture and filter out toxic pollutants from mining and other industrial wastes, as well as catalyse important industrial processes.

Dr Ian Grey, a mineralogist from CSIRO Minerals who will tonight receive a Clunies Ross Award for his substantial contribution to Australia’s mineral sands industry, discovered the strongly weathered sands’ unusual properties whilst studying their chemical makeup.


But it was the ilmenite grains’ unusual physical properties that captured Dr Grey’s interest. "The weathering has created nanoscale porosity in the sand grains," says Dr Grey. "This means the grains may act like molecular sieves, selectively adsorbing a variety of different chemicals within the nanopores."

"Normally we process such sands to produce products such as titania pigment feedstocks and titanium metal, but the Murray Basin sands may have opened the door to new ways to prevent pollution reaching the environment and to clean up environments already polluted," he says.

Nanoporous silicate materials became a commercial reality in 1992, and in recent years considerable effort has gone into attempts to synthesise nanoporous titanates. However, substantial obstacles to commercialisation remain, including high cost of reactants and lack of thermal stability.

"The weathered mineral sands have a number of natural advantages over the synthetic versions," says Dr Grey, "They are mechanically strong and thermally stable to relatively high temperatures. And they exist naturally - hey provide a value-dded product with minimal processing required."

The Murray Basin’s vast mineral sands deposits - rich in the economic minerals ilmenite, rutile and zircon - were formed along ancient coastlines, where the heavier minerals were concentrated by wave and wind action. Over millions of years, sea, sun and air have weathered these sands and changed their physical and chemical structures.

Dr Grey is continuing to characterise these ancient weathered sands in order to further determine the potential applications of Murray Basin minerals sands. He plans to apply this knowledge to develop and test procedures for industrial uses of these natural minerals, and to aid the design of procedures for synthesising equivalent materials.

Dr Grey is one of two CSIRO scientists to be presented with ATSE Clunies Ross Awards tonight in Melbourne.

The other CSIRO winner is Dr Rob Evans of CSIRO Forestry and Forest Products who will receive an award for his research into the development of a wood imaging system.


Scientific enquiries and contact with Dr Ian Grey:
Meg Rive, CSIRO Minerals, (03) 9545 8614, mobile: 0438 007 301
Email: Meg.Rive@csiro.au

Information about the ATSE Clunies Ross Awards:
Niall Byrne, (03) 5253 1391, mobile: 0417 131 977
Email: niall@scienceinpublic.com Visit our website: http://www.scienceinpublic.com/

Geoff Burchfield | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=Prmolecularsieve

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>