Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aquatic scientists divided on role of sea lice from salmon farms in decline of native salmon in B.C.

04.03.2004


Salmon farms in British Columbia may pose a threat to wild salmon stocks, a paper published today in the Canadian Journal of Fisheries and Aquatic Sciences claims. The paper presents evidence that native fish sampled near the farms are more heavily infected with parasitic sea lice. Lead author Alexandra Morton, a registered professional biologist and private researcher, believes the parasites multiply on the farms and are then transmitted to juvenile native salmon, causing recent drastic declines in wild fish populations. "If we don’t do anything, we’re definitely going to lose the wild salmon," said Morton.



Morton monitored the levels of infection of sea lice (unrelated to human lice), naturally occurring parasites that infect salmon only, on juvenile pink and chum salmon in British Columbia’s Broughton Archipelago, a chain of islands between the mainland coast and the northern end of Vancouver Island. She then compared infection rates on salmon from sites near to and far from the farms.

"We found 3 cases of sea lice in a sample of 1,018 juvenile salmon outside of the Broughton Archipelago. Within the Broughton Archipelago," where there are 28 Atlantic salmon farms, "we found 4,338 of this species of sea louse on 1,138 salmon," -- a 1,000-fold difference, said Morton. Her study showed potentially lethal levels of infection in 90 percent of wild juvenile salmon. Morton believes the young native salmon become infected when they swim near the farms during their migration from freshwater streams to the open ocean.


Morton said that to preserve native salmon stocks, "the farm fish have to be separated from the wild fish. There are alternative technologies that allow farmers to grow fish in facilities that provide a barrier to the marine environment." A barrier would prevent transfer of disease and parasites between the farmed and wild fish.

Because of concerns about possible effects of sea lice on native fish, 11 of 27 Atlantic salmon farms in the Broughton Archipelago were closed during the migration of the pink salmon in 2003 (a practice called "fallowing"). "It was a big economic loss to the farmers," said Morton. And it didn’t entirely solve the problem. "We still had over 20 percent of the fish infected, and the farmers can not repeat this measure this year."

Scott McKinley, Professor and Senior Canada Research Chair of Animal Sciences at the University of British Columbia and Executive Scientific Director of AquaNET, a National Network of Centres of Excellence in aquaculture and environmental research whose mandate is to foster a sustainable aquaculture sector in Canada, disagrees with Morton’s conclusions. He suggests that there is no evidence that native fish are declining due to farming.

"With any fish population, one or two years of surveys does not make a trend. . .. There have been drastic declines in pink salmon before, and that was before there were farms here," said McKinley. "There is no study published showing a cause-and-effect relationship between sea lice on wild and farmed fish. . . All the work that’s out there is based on correlations."

McKinley suggests that other explanations for the population fluctuations in wild fish are also likely. For example, population crashes could result from limited resource availability or fishing pressure. Fluctuations in water temperature on a global scale, such as those caused by El Niño, could make the salmon sick and stressed. "If you happen to be weak or stressed in terms of general health, you tend to be more susceptible to parasite infection."

Pressures from environmentalist groups about sea lice are forcing the aquaculture sector to make sacrifices based on inadequate information, McKinley said. He said that in the Broughton Archipelago "the farms were fallowed because of pressure from environmentalists who believed that there was a problem with sea lice on the farms. Although this wasn’t backed by scientific evidence, farms cooperated and likely lost a lot of money."

Morton argues that similar outbreaks of sea lice paired with declines in native salmon in Norway, Scotland, and Ireland corroborate her findings. "In Norway, there are very strict regulations about how many lice you’re allowed on your fish."

However, McKinley stressed that environmental conditions in Europe are different from those in British Columbia, and he warns against global extrapolations. He said that AquaNET, in collaboration with other national and international scientists, plans to study how native and farmed fish are affected by sea lice and conduct risk analyses of lice treatments.

Morton insists that if regulatory action is delayed, the consequences to wild fish could be serious. "The Norwegian scientists have said to me that they expected this problem to arise on the Pacific coast and that we will have good years for sea lice and bad years, but in the end we will lose our wild stocks. That seems unnecessary. Wild salmon are ecologically critical, and we have other options."


The Canadian Journal of Fisheries and Aquatic Sciences is a scientific peer-reviewed journal published by the NRC Research Press.

Alexandra Morton | EurekAlert!
Further information:
http://www.nrc.ca/
http://pubs.nrc-cnrc.gc.ca/cgi-bin/rp/rp2_tocs_e?cjfas_cjfas2-04_61.

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>