Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting pollen helps preserve natural environments

12.11.2003


Are rainforests as ’natural’ as they appear? How best to replant large forest areas destroyed by fire? A new consultancy service providing the data needed to answer these and other questions has been established at the University of Oxford.



BioGeoSciences for Conservation’ (BGSC) has been set up to help managers having to make those decisions by providing information about how environments have evolved over long timescales. The consultancy service is backed by a specialist laboratory which uses fossil records such as pollen and charcoal to reconstruct how forests, savannas and other areas developed in response to changes in climate, disturbances by fire and people, and changes in soil fertility and water availability over hundreds to thousands of years.

Dr Kathy Willis, one of three Principals of BGSC, also heads the Oxford Long-term Ecology Laboratory. She said: ‘What is unique about this service is the way in which it links together many techniques to provide information that is not normally accessible to those involved in environmental management who tend to base their decisions simply on knowledge of current ecological patterns. We take a long-term perspective, sometimes over thousands of years, to help manage biodiversity today.


’One of our projects, for example, is looking at the dynamics of the ecosystem in the Kruger National Park in South Africa. It was long believed that preserving this ecosystem would mean preventing vegetation from changing. But trying to keep such an environment stable is fighting a losing battle. Current ecological thinking recognises that variation is normal. Our work looks at how the vegetation of this area has developed over hundreds of years – which will help the Park scientists to decide when to let changes in vegetation run their course and when to intervene.’

The researchers collect data by ’coring’, which means boring a long thin tube into swampy ground in which pollen has been preserved for thousands of years. The ’core’ provides them with a layered sample of the sediments which accumulated over time. By analysing the pollen throughout the sample, the researchers can develop a chart of the plant species that were present at each point in time. Techniques such as radiocarbon dating are used to show the timescale over which the vegetation changes took place.

Dr Willis added: ’If we find, say, a high occurrence of maize or cereal pollen together with an abundance of charcoal and some pottery, following a period of dense forestation, we can assume that human settlers cleared the area by fire and started planting crops.’

The team also use other approaches to understand environmental change in an area. A recent project, examining the history of mass movements thought to be threatening a property in the South Cotswolds, used monitoring, climate data and dendrogeomorphological techniques to explain the nature and severity of the slope movements. Dr Willis said: ’Dendrogeomorphological techniques use the changing nature of tree rings and trunk growth to work out whether the trees have been affected by soil movements, landslides or other geomorphic events.’

Barbara Hott | alfa
Further information:
http://www.geog.ox.ac.uk/research/biodiversity/
http://www.geog.ox.ac.uk/research/biodiversity/lel/

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>