Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting pollen helps preserve natural environments

12.11.2003


Are rainforests as ’natural’ as they appear? How best to replant large forest areas destroyed by fire? A new consultancy service providing the data needed to answer these and other questions has been established at the University of Oxford.



BioGeoSciences for Conservation’ (BGSC) has been set up to help managers having to make those decisions by providing information about how environments have evolved over long timescales. The consultancy service is backed by a specialist laboratory which uses fossil records such as pollen and charcoal to reconstruct how forests, savannas and other areas developed in response to changes in climate, disturbances by fire and people, and changes in soil fertility and water availability over hundreds to thousands of years.

Dr Kathy Willis, one of three Principals of BGSC, also heads the Oxford Long-term Ecology Laboratory. She said: ‘What is unique about this service is the way in which it links together many techniques to provide information that is not normally accessible to those involved in environmental management who tend to base their decisions simply on knowledge of current ecological patterns. We take a long-term perspective, sometimes over thousands of years, to help manage biodiversity today.


’One of our projects, for example, is looking at the dynamics of the ecosystem in the Kruger National Park in South Africa. It was long believed that preserving this ecosystem would mean preventing vegetation from changing. But trying to keep such an environment stable is fighting a losing battle. Current ecological thinking recognises that variation is normal. Our work looks at how the vegetation of this area has developed over hundreds of years – which will help the Park scientists to decide when to let changes in vegetation run their course and when to intervene.’

The researchers collect data by ’coring’, which means boring a long thin tube into swampy ground in which pollen has been preserved for thousands of years. The ’core’ provides them with a layered sample of the sediments which accumulated over time. By analysing the pollen throughout the sample, the researchers can develop a chart of the plant species that were present at each point in time. Techniques such as radiocarbon dating are used to show the timescale over which the vegetation changes took place.

Dr Willis added: ’If we find, say, a high occurrence of maize or cereal pollen together with an abundance of charcoal and some pottery, following a period of dense forestation, we can assume that human settlers cleared the area by fire and started planting crops.’

The team also use other approaches to understand environmental change in an area. A recent project, examining the history of mass movements thought to be threatening a property in the South Cotswolds, used monitoring, climate data and dendrogeomorphological techniques to explain the nature and severity of the slope movements. Dr Willis said: ’Dendrogeomorphological techniques use the changing nature of tree rings and trunk growth to work out whether the trees have been affected by soil movements, landslides or other geomorphic events.’

Barbara Hott | alfa
Further information:
http://www.geog.ox.ac.uk/research/biodiversity/
http://www.geog.ox.ac.uk/research/biodiversity/lel/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>