Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aussie arsenic-eating bacteria may save lives and clean mines

26.08.2003


Melbourne scientists plan to harness the strange appetite of newly discovered Australian bacteria to help purify arsenic-contaminated water.



The research group, led by microbiologist Dr Joanne Santini of La Trobe University, is working out how to use bacteria that eat arsenic to clean up contaminated wastewater in Australian and overseas mining environments and drinking wells in Bangladesh and West Bengal, India.

Dr Santini presented her research at Fresh Science, a British Council sponsored program to highligh the achievements of early career Australian researchers.


“If the iron guts of bacteria that can eat arsenic without dying could be harnessed to process this waste, less damage would be done to the environment and hopefully, one day, fewer people on the subcontinent will get sick,” Dr Santini said.

“We hope the bacteria will one day be used in bioremediation - a biological process where bacteria that eat arsenic will be used to clean up the contaminated water.”

“It is theoretically cheaper and safer to use bacteria to clean up environmental mess than it is to use dangerous and expensive chemical methods that employ chlorine or hydrogen peroxide” Dr Santini said.

Dr Santini and her students are studying 13 rare bacteria that were isolated from gold mines in the Northern Territory and Bendigo, Victoria - the only lab in the world to do so.

Arsenic occurs naturally in rocks and in this form is harmless. But when exposed to air and water, the arsenic becomes soluble and toxic to plants, animals and humans.

Mining and boring rock for drinking wells can expose the rock-bound arsenic to air and water and turn it into two toxic forms: arsenate and arsenite.

Arsenate is easy and safe to get rid of. But arsenite
is not, and it is this form of arsenic Dr Santini hopes can be removed by the use of arsenite-eating bacteria on a mass scale.

One bacterium, NT-26, is an arsenite-munching champion. It eats arsenite and excretes arsenate.

Dr Santini’s group has found the enzyme directly responsible for converting arsenite to arsenate and they are working to identify the same enzyme in the other microbes. They are also hunting for other proteins and genes involved in eating arsenite.

“In order to know how to best use these microbes for bioremediation we must first study how they eat arsenite,” Dr Santini said. “We can’t just plonk them into a biological reactor and hope for the best.”

“The knowledge from this research should allow us to set up a bioremediation system that will not only clean up mining waste water but perhaps provide the Bangladeshis and West Bengalis with safer drinking water.”

Dr Santini has a current Australian Research Council Discovery grant to study these arsenite-eating bacteria.

Niall Byrne | alfa
Further information:
http://freshscience.org

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>