Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aussie arsenic-eating bacteria may save lives and clean mines

26.08.2003


Melbourne scientists plan to harness the strange appetite of newly discovered Australian bacteria to help purify arsenic-contaminated water.



The research group, led by microbiologist Dr Joanne Santini of La Trobe University, is working out how to use bacteria that eat arsenic to clean up contaminated wastewater in Australian and overseas mining environments and drinking wells in Bangladesh and West Bengal, India.

Dr Santini presented her research at Fresh Science, a British Council sponsored program to highligh the achievements of early career Australian researchers.


“If the iron guts of bacteria that can eat arsenic without dying could be harnessed to process this waste, less damage would be done to the environment and hopefully, one day, fewer people on the subcontinent will get sick,” Dr Santini said.

“We hope the bacteria will one day be used in bioremediation - a biological process where bacteria that eat arsenic will be used to clean up the contaminated water.”

“It is theoretically cheaper and safer to use bacteria to clean up environmental mess than it is to use dangerous and expensive chemical methods that employ chlorine or hydrogen peroxide” Dr Santini said.

Dr Santini and her students are studying 13 rare bacteria that were isolated from gold mines in the Northern Territory and Bendigo, Victoria - the only lab in the world to do so.

Arsenic occurs naturally in rocks and in this form is harmless. But when exposed to air and water, the arsenic becomes soluble and toxic to plants, animals and humans.

Mining and boring rock for drinking wells can expose the rock-bound arsenic to air and water and turn it into two toxic forms: arsenate and arsenite.

Arsenate is easy and safe to get rid of. But arsenite
is not, and it is this form of arsenic Dr Santini hopes can be removed by the use of arsenite-eating bacteria on a mass scale.

One bacterium, NT-26, is an arsenite-munching champion. It eats arsenite and excretes arsenate.

Dr Santini’s group has found the enzyme directly responsible for converting arsenite to arsenate and they are working to identify the same enzyme in the other microbes. They are also hunting for other proteins and genes involved in eating arsenite.

“In order to know how to best use these microbes for bioremediation we must first study how they eat arsenite,” Dr Santini said. “We can’t just plonk them into a biological reactor and hope for the best.”

“The knowledge from this research should allow us to set up a bioremediation system that will not only clean up mining waste water but perhaps provide the Bangladeshis and West Bengalis with safer drinking water.”

Dr Santini has a current Australian Research Council Discovery grant to study these arsenite-eating bacteria.

Niall Byrne | alfa
Further information:
http://freshscience.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>