Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aussie arsenic-eating bacteria may save lives and clean mines


Melbourne scientists plan to harness the strange appetite of newly discovered Australian bacteria to help purify arsenic-contaminated water.

The research group, led by microbiologist Dr Joanne Santini of La Trobe University, is working out how to use bacteria that eat arsenic to clean up contaminated wastewater in Australian and overseas mining environments and drinking wells in Bangladesh and West Bengal, India.

Dr Santini presented her research at Fresh Science, a British Council sponsored program to highligh the achievements of early career Australian researchers.

“If the iron guts of bacteria that can eat arsenic without dying could be harnessed to process this waste, less damage would be done to the environment and hopefully, one day, fewer people on the subcontinent will get sick,” Dr Santini said.

“We hope the bacteria will one day be used in bioremediation - a biological process where bacteria that eat arsenic will be used to clean up the contaminated water.”

“It is theoretically cheaper and safer to use bacteria to clean up environmental mess than it is to use dangerous and expensive chemical methods that employ chlorine or hydrogen peroxide” Dr Santini said.

Dr Santini and her students are studying 13 rare bacteria that were isolated from gold mines in the Northern Territory and Bendigo, Victoria - the only lab in the world to do so.

Arsenic occurs naturally in rocks and in this form is harmless. But when exposed to air and water, the arsenic becomes soluble and toxic to plants, animals and humans.

Mining and boring rock for drinking wells can expose the rock-bound arsenic to air and water and turn it into two toxic forms: arsenate and arsenite.

Arsenate is easy and safe to get rid of. But arsenite
is not, and it is this form of arsenic Dr Santini hopes can be removed by the use of arsenite-eating bacteria on a mass scale.

One bacterium, NT-26, is an arsenite-munching champion. It eats arsenite and excretes arsenate.

Dr Santini’s group has found the enzyme directly responsible for converting arsenite to arsenate and they are working to identify the same enzyme in the other microbes. They are also hunting for other proteins and genes involved in eating arsenite.

“In order to know how to best use these microbes for bioremediation we must first study how they eat arsenite,” Dr Santini said. “We can’t just plonk them into a biological reactor and hope for the best.”

“The knowledge from this research should allow us to set up a bioremediation system that will not only clean up mining waste water but perhaps provide the Bangladeshis and West Bengalis with safer drinking water.”

Dr Santini has a current Australian Research Council Discovery grant to study these arsenite-eating bacteria.

Niall Byrne | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>