Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Garden Grows Greener

06.06.2003


A NASA-Department of Energy jointly funded study concludes the Earth has been greening over the past 20 years. As climate changed, plants found it easier to grow.


Global change in NPP
Between 1982 and 1999, the climate became warmer, wetter, and sunnier in many parts of the world. These changes increased the overall productivity of land plants by 6 percent. This map shows productivity increases during the time period in green, while decreases are shown in brown. Productivity, which is the net uptake of carbon, increased the most in tropical regions, where climate change resulted in fewer clouds and more sunlight.
Credit: NASA Earth Observatory


Percent change in annual global Net Primary Production (NPP) change from 1982-1999. Purple represents the highest increase (2%) in NPP per year. Areas of blue and red represent decreasing annual NPP. Credit: University of Montana



The globally comprehensive, multi-discipline study appears in this week’s Science magazine. The article states climate changes have provided extra doses of water, heat and sunlight in areas where one or more of those ingredients may have been lacking. Plants flourished in places where climatic conditions previously limited growth.

"Our study proposes climatic changes as the leading cause for the increases in plant growth over the last two decades, with lesser contribution from carbon dioxide fertilization and forest re-growth," said Ramakrishna Nemani, the study’s lead author from the University of Montana, Missoula, Mont.


From 1980 to 2000, changes to the global environment have included two of the warmest decades in the instrumental record; three intense El Niño events in 1982-83, 1987-88 and 1997-98; changes in tropical cloudiness and monsoon dynamics; and a 9.3 percent increase in atmospheric carbon dioxide (CO2), which in turn affects man-made influences on climate. All these changes impact plant growth.

Earlier studies by Ranga Myneni, Boston University (BU), and Compton Tucker, NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md., also co-authors of the study, reported increased growing seasons and woody biomass in northern high-latitude forests.

Another co-author, Charles Keeling, Scripps Institution of Oceanography, La Jolla, Calif., cautions no one knows whether these positive impacts are due to short-term climate cycles, or longer-term global climate changes. Also, a 36 percent increase in global population, from 4.45 billion in 1980 to 6.08 billion in 2000, overshadows the increases in plant growth.

Nemani and colleagues constructed a global map of the Net Primary Production (NPP) of plants from climate and satellite data of vegetation greenness and solar radiation absorption. NPP is the difference between the CO2 absorbed by plants during photosynthesis, and CO2 lost by plants during respiration. NPP is the foundation for food, fiber and fuel derived from plants, without which life on Earth could not exist. Humans appropriate approximately 50 percent of global NPP.

NPP globally increased on average by six percent from 1982 to 1999. Ecosystems in tropical zones and in the high latitudes of the Northern Hemisphere accounted for 80 percent of the increase. NPP increased significantly over 25 percent of the global vegetated area, but decreased over seven percent of the area; illustrating how plants respond differently depending on regional climatic conditions.

Climatic changes, over approximately the past 20 years, tended to be in the direction of easing climatic limits to plant growth. In general, in areas where temperatures restricted plant growth, it became warmer; where sunlight was needed, clouds dissipated; and where it was too dry, it rained more. In the Amazon, plant growth was limited by sun blocking cloud cover, but the skies have become less cloudy. In India, where a billion people depend on rain, the monsoon was more dependable in the 1990s than in the 1980s.

The climate data for NPP calculations came from the National Oceanic and Atmospheric Administration (NOAA) National Center for Environmental Prediction. Researchers used two independently derived 18-plus-year satellite datasets from the Advanced Very High Resolution Radiometers on NOAA satellite. The team processed and improved the data at GSFC and BU.

"Systematic observation of global vegetation is being continued by NASA’s Earth observing satellites. Earth observing satellites are paving the way to find out if these biospheric responses are going to hold for the future," adds Steve Running, another co-author from the University of Montana.

NASA’s Earth Science Enterprise is committed to studying the primary causes of the Earth system variability, including both natural and human-induced causes.

Krishna Ramanujan | Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0530earthgreen.html
http://www.gsfc.nasa.gov/

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>