Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunlight converts common anti-bacterial agent to dioxin

15.04.2003


Sunlight can convert triclosan, a common disinfectant used in anti-bacterial soaps, into a form of dioxin, and this process may produce some of the dioxin found in the environment, according to research at the University of Minnesota. The researchers said that although the dioxin was a relatively benign form, treating wastewater with chlorine could possibly lead to the production of a much more toxic species of dioxin. The study is in press in the Journal of Photochemistry and Photobiology A: Chemistry.



It had already been known that triclosan could be converted to dioxin in the laboratory, and it was also known that sunlight causes triclosan to degrade in the environment. But it had not been known that the natural degradation resulted in dioxin, said researchers Kristopher McNeill, an assistant professor of chemistry, and William Arnold, assistant professor of civil engineering. They discovered that the reaction could occur in Mississippi River water exposed to ultraviolet light.

"This form of dioxin is at least 150,000 times less toxic than the most dangerous form," said McNeill. "But repeated exposure to chlorine, perhaps in water treatment facilities, could chlorinate triclosan. After chlorinated triclosan is discharged from the facility, sunlight could convert it into more toxic dioxins. Such a process could be a source of highly toxic dioxin in the environment."


"This study also shows that the disappearance of a pollutant such as triclosan doesn’t necessarily mean an enviromental threat has been removed," said Arnold. "It may just have been converted into another threat."

The researchers began their study after reading numerous environmental studies that reported the presence of pharmaceutical compounds in surface waters around the nation. McNeill and Arnold decided that the logical next step was to examine the natural processes that led to the loss of such materials in the environment. Last year, the U.S. Geological Survey published a widely circulated study of chemicals in surface water, in which triclosan was found in 58 percent of natural waters tested. Its median concentration was 0.14 parts per billion; the maximum was 2.3 ppb. McNeill and Arnold chose to study triclosan because they could tell from its structure that it would likely break down in sunlight.

In their study, McNeill and Arnold added triclosan to river water, shined ultraviolet light on the water, and found that between one percent and 12 percent of the triclosan was converted to dioxin.

"The fact that this conversion can happen in surface layers of rivers may not cause harm by itself, but it suggests that more serious reactions--leading to more toxic forms of dioxin--may also happen when triclosan enters the environment," said Arnold. "We want to determine if this is the case." As a first step in sorting out the relations, if any, between triclosan and more toxic dioxin, McNeill and Arnold plan studies to determine whether they tend to occur together in natural waters.

The researchers said that even low levels of very toxic dioxin are worrisome because dioxin readily accumulates in organisms and becomes more concentrated in tissues as it moves up the food chain.

The study was funded by the U.S. Geological Survey, through the National Institutes of Water Resources. Triclosan is manufactured by Ciba-Geigy.


###
To access the study, go to www.sciencedirect.com; click on "Journals"; search under "J"; select the Journal of Photochemistry and Photobiology A: Chemistry; and click on "Articles in press." It will be the fourth article.

Kristopher McNeill, Chemistry dept., 612-625-0781

William Arnold, Civil engineering dept., 612-625-8582

Deane Morrison, University News Service, 612-624-2346

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>