Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunlight converts common anti-bacterial agent to dioxin

15.04.2003


Sunlight can convert triclosan, a common disinfectant used in anti-bacterial soaps, into a form of dioxin, and this process may produce some of the dioxin found in the environment, according to research at the University of Minnesota. The researchers said that although the dioxin was a relatively benign form, treating wastewater with chlorine could possibly lead to the production of a much more toxic species of dioxin. The study is in press in the Journal of Photochemistry and Photobiology A: Chemistry.



It had already been known that triclosan could be converted to dioxin in the laboratory, and it was also known that sunlight causes triclosan to degrade in the environment. But it had not been known that the natural degradation resulted in dioxin, said researchers Kristopher McNeill, an assistant professor of chemistry, and William Arnold, assistant professor of civil engineering. They discovered that the reaction could occur in Mississippi River water exposed to ultraviolet light.

"This form of dioxin is at least 150,000 times less toxic than the most dangerous form," said McNeill. "But repeated exposure to chlorine, perhaps in water treatment facilities, could chlorinate triclosan. After chlorinated triclosan is discharged from the facility, sunlight could convert it into more toxic dioxins. Such a process could be a source of highly toxic dioxin in the environment."


"This study also shows that the disappearance of a pollutant such as triclosan doesn’t necessarily mean an enviromental threat has been removed," said Arnold. "It may just have been converted into another threat."

The researchers began their study after reading numerous environmental studies that reported the presence of pharmaceutical compounds in surface waters around the nation. McNeill and Arnold decided that the logical next step was to examine the natural processes that led to the loss of such materials in the environment. Last year, the U.S. Geological Survey published a widely circulated study of chemicals in surface water, in which triclosan was found in 58 percent of natural waters tested. Its median concentration was 0.14 parts per billion; the maximum was 2.3 ppb. McNeill and Arnold chose to study triclosan because they could tell from its structure that it would likely break down in sunlight.

In their study, McNeill and Arnold added triclosan to river water, shined ultraviolet light on the water, and found that between one percent and 12 percent of the triclosan was converted to dioxin.

"The fact that this conversion can happen in surface layers of rivers may not cause harm by itself, but it suggests that more serious reactions--leading to more toxic forms of dioxin--may also happen when triclosan enters the environment," said Arnold. "We want to determine if this is the case." As a first step in sorting out the relations, if any, between triclosan and more toxic dioxin, McNeill and Arnold plan studies to determine whether they tend to occur together in natural waters.

The researchers said that even low levels of very toxic dioxin are worrisome because dioxin readily accumulates in organisms and becomes more concentrated in tissues as it moves up the food chain.

The study was funded by the U.S. Geological Survey, through the National Institutes of Water Resources. Triclosan is manufactured by Ciba-Geigy.


###
To access the study, go to www.sciencedirect.com; click on "Journals"; search under "J"; select the Journal of Photochemistry and Photobiology A: Chemistry; and click on "Articles in press." It will be the fourth article.

Kristopher McNeill, Chemistry dept., 612-625-0781

William Arnold, Civil engineering dept., 612-625-8582

Deane Morrison, University News Service, 612-624-2346

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>