Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increase in rainfall variability related to global climate change

13.12.2002


Impacts on ecosystems are greater than previously anticipated



Projected increases in rainfall variability resulting from changes in global climate can rapidly reduce productivity and alter the composition of grassland plants, according to scientists funded by the National Science Foundation (NSF). Although the diversity of plant species is increased in this scenario, the most important or dominant grasses were more water-stressed and their growth was reduced. Carbon dioxide release by roots and microbes below ground also was reduced.

Results of the experiment, conducted at NSF’s Konza Prairie Long Term Ecological Research (LTER) site, are published in this week’s (December 13th) issue of the journal Science.


The biologists, Alan Knapp, Philip Fay, and John Blair and colleagues of Kansas State University, Scott Collins of NSF, and Melinda Smith at the National Center for Ecological Analysis and Synthesis at the University of California, Santa Barbara, found that more extreme swings in rainfall patterns, without any changes in the total amount of rainfall received in a growing season, reduced the biomass of plants but increased the variety of species able to live in a particular experimental plot of land.

"This study is the first to focus on and manipulate climate variability in an intact ecosystem, without altering the average climate," said Quentin Wheeler, director of NSF’s division of environmental biology, which funded the research along with the U.S. Department of Agriculture and the U.S. Department of Energy. "Because these responses are similar to those that would occur under drought conditions, the results suggest that increased rainfall variability combined with projected higher temperatures and decreased rainfall amounts, may lead to even greater impacts on ecosystems than previously anticipated."

In this study of how grasslands respond to more variation in rainfall patterns, the scientists hoped to better understand how rapidly and to what extent ecosystems might respond to a future with more climate extremes. In the four-year field study, the researchers altered rainfall variability by increasing the amount of precipitation that falls in one storm, and lengthened the periods of time between rainfalls by 50 percent. That effectively increased the severity of dry periods between storms without altering the total amount of precipitation received during a growing season.

"When these native grassland plots, exposed to more variable rainfall patterns, were compared with plots that received rainfall in a natural pattern, the overall growth of all plants decreased," said Knapp. "More variable rainfall patterns led to lower amounts of water in the soil in the upper 30 centimeters. Since this is the soil depth where most plant roots occur, and where important soil microbes are most abundant, grasses there were water-stressed and the activity of below-ground organisms was reduced."

In contrast, said Collins, "the diversity of plants in plots with greater variability in rainfall patterns increased." Collins cites two possible explanations for this finding: "A high degree of variability in resources can lead to a greater number of co-existing species. Or reduced total productivity may have allowed less common species to increase in abundance." Regardless of the mechanism, said Collins, these results show that plant community structure can be significantly changed, and the cycling of carbon slowed, in as little as four years when grasslands are exposed to a more variable climate.

Concerns about predicted climate changes resulting from human activities often focus on the effects of increases in average air temperatures or changes in average precipitation amounts. But widely used climate models also predict increases in climate extremes, said Knapp, such as more frequent large rainfall events or more severe droughts. "It’s important that we look at variability in a new way: not only from year to year or decade to decade, but from storm to storm."


###
NSF PR 02-98

Media Contact:
Cheryl Dybas
703-292-8070, cdybas@nsf.gov

Program Contact:
Henry Gholz
703-292-7185, hgholz@nsf.gov




Cheryl Dybas | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>