Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Pollution Hot Spots Identified

10.12.2002



Researchers at the National Center for Atmospheric Research (NCAR) and other institutions have pinpointed the locations of high concentrations of air pollutants around the world by combining data from four satellite imaging systems. Their findings are being presented this week in San Francisco at the annual meeting of the American Geophysical Union (AGU).

The researchers used information from instruments on NASA and European Space Agency satellites to measure atmospheric levels of three types of pollutants that can affect human health: carbon monoxide, nitrogen dioxide, and aerosols. They found especially high concentrations of each over the eastern United States, western and southern Europe, and eastern China, which are among the most heavily industrialized regions in the world.

Steven Massie, an atmospheric chemist at NCAR on the data analysis team, says such satellite images of air pollutants are important for efforts to improve air quality. "As the capability of these imaging systems becomes more and more powerful, the international community will have a way of studying pollution on a global basis and the technical means to monitor emissions from each country,” he explains.



The pollutants vary somewhat by season. In eastern China, for example, urban-industrial emissions of nitrogen dioxide spike during the winter. In the spring, however, aerosol levels are especially high, both because of industrial activities and because of winds that blow in dust from the Gobi and other deserts to the west.

Once airborne, the pollutants often drift eastward and diminish the air quality in neighboring areas. The research, for example, shows that carbon monoxide, nitrogen dioxide, and aerosols from China flow eastward over Japan and the north Pacific Ocean.

Nitrogen dioxide and carbon monoxide are produced largely by industrial activities and vehicle exhaust. Nitrogen dioxide leads to the formation of smog and can irritate the lungs; high levels of carbon monoxide cause a variety of health effects, especially for people with cardiovascular diseases.

Aerosols, or microscopic particles in the air, can cause respiratory ailments as well as reduce visibility and damage buildings. They are associated both with industrial activities and with such natural sources as desert dust and forest fires. Previous research has demonstrated that high aerosol concentrations in nonindustrialized regions over Africa, western China, and eastern Siberia are due to desert dust storms, wildfires, and burning of vegetation for agriculture, home heating, and cooking.

The researchers used four instruments to collect their data. The Moderate Resolution Imaging Spectroradiometer (MODIS), Total Ozone Mapping Spectrometer (TOMS), and Measurements of Pollution in the Troposphere (MOPITT) device take atmospheric readings from aboard NASA satellites; the Global Ozone Monitoring Experiment (GOME) is a spectrometer on the second European Remote Sensing Satellite. MOPITT is a joint project of NCAR and the Canadian Space Agency.

In addition to NCAR, the research team includes scientists from NASA Goddard Space Flight Center and the University of Bremen in Germany.

Anatta | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>