Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-native earthworms may be wiping out rare plants

22.11.2002


Most of us don’t pay much attention to earthworms but maybe we should. New research suggests that non-native earthworms are radically changing the forest floor in the northern U.S., threatening the goblin fern and other rare plants in the process.


This is "the first research to show that exotic earthworms are harmful to rare native vegetation in northern forests," says Michael Gundale of Michigan Technological University in Houghton, who presents this work in the December issue of Conservation Biology.

About 10,000 years ago, glaciers pushed the range of North American earthworms southward and today the only earthworms found in most of Minnesota are non-native species introduced from Europe. Some of these earthworms eat the top part of the soil (a layer of decomposing litter called the forest floor) and this could endanger the goblin fern, a rare species that grows mostly underground.

Found only in the upper Great Lakes region, goblin ferns live between the forest floor and the underlying mineral soil. Because these tiny ferns only send up leaves briefly during the summer (and often don’t emerge at all), they are thought to get some of their energy from fungi in the forest floor instead of by photosynthesizing.



To see if non-native earthworms are wiping out goblin ferns by eating the forest floor, Gundale studied 28 sites where populations of the fern had previously been found in northern Minnesota’s Chippewa National Forest. He surveyed each site for both goblin ferns and earthworms, and took soil cores to measure the depth of the forest floor.

Gundale found that the fern had disappeared at a third of the sites studied (nine out of 28) and that these local fern extinctions were linked to two factors: the presence of a non-native earthworm and a thinner forest floor. The forest floor at "earthworm" sites was only half as thick as that at worm-free sites (about 1.5 vs. 3 inches, respectively).

To confirm that this non-native earthworm can make the forest floor thinner, Gundale added large quantities of the worm to soil cores in the laboratory. He found that after 60 days, the forest floor was only half as thick as it had been.

Gundale speculates that non-native earthworms may reach northern forests as eggs, which are resilient and so could be spread via tires. In support of this, he observed that earthworm invasions were more severe closer to roads.

Based partly on Gundale’s work, the U.S. Forest Service is trying to protect the goblin fern by restricting logging and road-building where it grows.


FOR MORE INFORMATION:

John Casson, Chippewa National Forest (jcasson@fs.fed.us)

Institute of Ecosystem Studies: Invasion of North Temperate Forest Soils by Exotic Earthworms: http://www.ecostudies.org/research/reports/grofrep2.html
For PDFs of papers, contact Robin Meadows: robin@nasw.org; http://nasw.org/users/rmeadows

For any photos provided by researchers:

To register for media access to the TOC and our expert directory: http://www.conbio.org/scb/information/media/

For more information about the Society for Conservation Biology: http://conservationbiology.org/

FAQ: SCB is developing a conservation biology FAQ; please help us make it useful to you by sending suggestions for questions to Robin Meadows: robin@nasw.org




Michael Gundale | EurekAlert!
Further information:
http://www.conbio.org/scb/information/media/
http://conservationbiology.org/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>