Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms are cleaning up Boston Harbor, UMass study finds

14.11.2002


Research detailed in the journal, Environmental Science and Technology



Microorganisms are cleaning up contaminants in the mud beneath Boston Harbor, and if humans prevent future fuel spills and leaks, the harbor could potentially cleanse itself within the next 10 to 20 years, according to research conducted at the University of Massachusetts Amherst. The findings are detailed in the Nov. 15 issue of the journal Environmental Science and Technology. The work was funded by the Office of Naval Research.

Scientists had previously determined that these contaminants, called polycyclic aromatic hydrocarbons, or PAHs, could biodegrade if suspended in water. But it was also believed that once PAHs sank into the silt at the bottom of the harbor, they could not be oxidized or degraded – a theory that the new study challenges.


"This is important because it demonstrates that the self-purification capacity of the harbor is much greater than previously recognized," said UMass microbiologist Derek Lovley, a co-author on the paper. "Furthermore, if future spills of contaminants can be eliminated, the harbor may get cleaned up in large part due to natural activity without the requirement for expensive remediation strategies. It does give us hope for the longer term, if practices change."

Marine harbors are frequently polluted with contaminants from fuel spills, industrial waste, shipping activities, runoff, soot, and creosote-treated pilings, Lovley said. Although some chemical portions of these contaminants readily degrade, PAHs tend to accumulate in the sediment. "They’re not very soluble in water, and they don’t react chemically with many other compounds," said Lovley, "so they collect in the mud at the bottom of the harbor." Previous research has shown that PAHs accumulate in fish and other aquatic animals, and are often associated with cancers in some fish. Some PAHs are highly toxic, and are suspected carcinogens in humans.

The UMass team was prompted to study the issue after earlier research by Lovley found that benzene degrades in the absence of oxygen, in certain conditions. PAHs are essentially groups of two to five benzene rings, Lovley noted. His collaborators on the Boston Harbor project were Mary Rothermich, a former postdoctoral researcher at UMass who is now at Harvard University, and Lory Hayes, a former graduate student who now works in industry.

The key component in the microbial action appears to be the existence of sulfate in the water, said Lovley. "As long as there is sulfate in the water, the PAHs can degrade slowly." Sulfate is a salt of sulfuric acid, and is naturally abundant in seawater, according to Lovley. These microorganisms use sulfate the same way that humans use oxygen. Whereas we use oxygen to oxidize the food that we consume, these microorganisms can oxidize PAHs and their other food sources with sulfate. In this way they can remain active in the mud at the bottom of the harbor where there is no oxygen.

In addition to Boston Harbor, the team also studied marine contaminants in San Diego, Calif., and in Latvia. For the local portion of the project, Boston Harbor sediments were pulled from the harbor near a former coal-tar plant in an area of Everett known as Island End. Coal-tar works had been in production in the area from the late 1800s to about 1960, according to Lovley. The sediments used in the study overlaid the site of a leaking underground storage tank that had been removed in the 1980s, he said.

Scientists monitored the sediment samples in the lab, replenishing the samples with fresh harbor water roughly once a month. They found that the PAHs in the collected sediments broke down 20-25 percent over 338 days – a little less than a year. "In a way, it seems slow, but if you’re thinking about the alternatives, it’s not bad to have some patience," Lovley said.

He noted that other alternatives for removing the contaminants, including dredging, are expensive and disruptive to the marine environment. Dredging also creates the additional problem of how to dispose of the contaminated mud. "Of course, you don’t want to say, ’Oh, it’s okay to keep dumping this stuff.’ The fact that it’s even there shows that the spillage rate is too fast for nature to keep up with. You have to actively protect the environment."


Note: Derek Lovley can be reached at 413-545-9651, or dlovley@microbio.umass.edu

Elizabeth Luciano | EurekAlert!
Further information:
http://www.umass.edu/

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

These could revolutionize the world

24.05.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>