Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms are cleaning up Boston Harbor, UMass study finds

14.11.2002


Research detailed in the journal, Environmental Science and Technology



Microorganisms are cleaning up contaminants in the mud beneath Boston Harbor, and if humans prevent future fuel spills and leaks, the harbor could potentially cleanse itself within the next 10 to 20 years, according to research conducted at the University of Massachusetts Amherst. The findings are detailed in the Nov. 15 issue of the journal Environmental Science and Technology. The work was funded by the Office of Naval Research.

Scientists had previously determined that these contaminants, called polycyclic aromatic hydrocarbons, or PAHs, could biodegrade if suspended in water. But it was also believed that once PAHs sank into the silt at the bottom of the harbor, they could not be oxidized or degraded – a theory that the new study challenges.


"This is important because it demonstrates that the self-purification capacity of the harbor is much greater than previously recognized," said UMass microbiologist Derek Lovley, a co-author on the paper. "Furthermore, if future spills of contaminants can be eliminated, the harbor may get cleaned up in large part due to natural activity without the requirement for expensive remediation strategies. It does give us hope for the longer term, if practices change."

Marine harbors are frequently polluted with contaminants from fuel spills, industrial waste, shipping activities, runoff, soot, and creosote-treated pilings, Lovley said. Although some chemical portions of these contaminants readily degrade, PAHs tend to accumulate in the sediment. "They’re not very soluble in water, and they don’t react chemically with many other compounds," said Lovley, "so they collect in the mud at the bottom of the harbor." Previous research has shown that PAHs accumulate in fish and other aquatic animals, and are often associated with cancers in some fish. Some PAHs are highly toxic, and are suspected carcinogens in humans.

The UMass team was prompted to study the issue after earlier research by Lovley found that benzene degrades in the absence of oxygen, in certain conditions. PAHs are essentially groups of two to five benzene rings, Lovley noted. His collaborators on the Boston Harbor project were Mary Rothermich, a former postdoctoral researcher at UMass who is now at Harvard University, and Lory Hayes, a former graduate student who now works in industry.

The key component in the microbial action appears to be the existence of sulfate in the water, said Lovley. "As long as there is sulfate in the water, the PAHs can degrade slowly." Sulfate is a salt of sulfuric acid, and is naturally abundant in seawater, according to Lovley. These microorganisms use sulfate the same way that humans use oxygen. Whereas we use oxygen to oxidize the food that we consume, these microorganisms can oxidize PAHs and their other food sources with sulfate. In this way they can remain active in the mud at the bottom of the harbor where there is no oxygen.

In addition to Boston Harbor, the team also studied marine contaminants in San Diego, Calif., and in Latvia. For the local portion of the project, Boston Harbor sediments were pulled from the harbor near a former coal-tar plant in an area of Everett known as Island End. Coal-tar works had been in production in the area from the late 1800s to about 1960, according to Lovley. The sediments used in the study overlaid the site of a leaking underground storage tank that had been removed in the 1980s, he said.

Scientists monitored the sediment samples in the lab, replenishing the samples with fresh harbor water roughly once a month. They found that the PAHs in the collected sediments broke down 20-25 percent over 338 days – a little less than a year. "In a way, it seems slow, but if you’re thinking about the alternatives, it’s not bad to have some patience," Lovley said.

He noted that other alternatives for removing the contaminants, including dredging, are expensive and disruptive to the marine environment. Dredging also creates the additional problem of how to dispose of the contaminated mud. "Of course, you don’t want to say, ’Oh, it’s okay to keep dumping this stuff.’ The fact that it’s even there shows that the spillage rate is too fast for nature to keep up with. You have to actively protect the environment."


Note: Derek Lovley can be reached at 413-545-9651, or dlovley@microbio.umass.edu

Elizabeth Luciano | EurekAlert!
Further information:
http://www.umass.edu/

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>