Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms are cleaning up Boston Harbor, UMass study finds

14.11.2002


Research detailed in the journal, Environmental Science and Technology



Microorganisms are cleaning up contaminants in the mud beneath Boston Harbor, and if humans prevent future fuel spills and leaks, the harbor could potentially cleanse itself within the next 10 to 20 years, according to research conducted at the University of Massachusetts Amherst. The findings are detailed in the Nov. 15 issue of the journal Environmental Science and Technology. The work was funded by the Office of Naval Research.

Scientists had previously determined that these contaminants, called polycyclic aromatic hydrocarbons, or PAHs, could biodegrade if suspended in water. But it was also believed that once PAHs sank into the silt at the bottom of the harbor, they could not be oxidized or degraded – a theory that the new study challenges.


"This is important because it demonstrates that the self-purification capacity of the harbor is much greater than previously recognized," said UMass microbiologist Derek Lovley, a co-author on the paper. "Furthermore, if future spills of contaminants can be eliminated, the harbor may get cleaned up in large part due to natural activity without the requirement for expensive remediation strategies. It does give us hope for the longer term, if practices change."

Marine harbors are frequently polluted with contaminants from fuel spills, industrial waste, shipping activities, runoff, soot, and creosote-treated pilings, Lovley said. Although some chemical portions of these contaminants readily degrade, PAHs tend to accumulate in the sediment. "They’re not very soluble in water, and they don’t react chemically with many other compounds," said Lovley, "so they collect in the mud at the bottom of the harbor." Previous research has shown that PAHs accumulate in fish and other aquatic animals, and are often associated with cancers in some fish. Some PAHs are highly toxic, and are suspected carcinogens in humans.

The UMass team was prompted to study the issue after earlier research by Lovley found that benzene degrades in the absence of oxygen, in certain conditions. PAHs are essentially groups of two to five benzene rings, Lovley noted. His collaborators on the Boston Harbor project were Mary Rothermich, a former postdoctoral researcher at UMass who is now at Harvard University, and Lory Hayes, a former graduate student who now works in industry.

The key component in the microbial action appears to be the existence of sulfate in the water, said Lovley. "As long as there is sulfate in the water, the PAHs can degrade slowly." Sulfate is a salt of sulfuric acid, and is naturally abundant in seawater, according to Lovley. These microorganisms use sulfate the same way that humans use oxygen. Whereas we use oxygen to oxidize the food that we consume, these microorganisms can oxidize PAHs and their other food sources with sulfate. In this way they can remain active in the mud at the bottom of the harbor where there is no oxygen.

In addition to Boston Harbor, the team also studied marine contaminants in San Diego, Calif., and in Latvia. For the local portion of the project, Boston Harbor sediments were pulled from the harbor near a former coal-tar plant in an area of Everett known as Island End. Coal-tar works had been in production in the area from the late 1800s to about 1960, according to Lovley. The sediments used in the study overlaid the site of a leaking underground storage tank that had been removed in the 1980s, he said.

Scientists monitored the sediment samples in the lab, replenishing the samples with fresh harbor water roughly once a month. They found that the PAHs in the collected sediments broke down 20-25 percent over 338 days – a little less than a year. "In a way, it seems slow, but if you’re thinking about the alternatives, it’s not bad to have some patience," Lovley said.

He noted that other alternatives for removing the contaminants, including dredging, are expensive and disruptive to the marine environment. Dredging also creates the additional problem of how to dispose of the contaminated mud. "Of course, you don’t want to say, ’Oh, it’s okay to keep dumping this stuff.’ The fact that it’s even there shows that the spillage rate is too fast for nature to keep up with. You have to actively protect the environment."


Note: Derek Lovley can be reached at 413-545-9651, or dlovley@microbio.umass.edu

Elizabeth Luciano | EurekAlert!
Further information:
http://www.umass.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>