Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites see big changes since 1980s in key element of ocean’s food chain

09.08.2002


Since the early 1980s, ocean phytoplankton concentrations that drive the marine food chain have declined substantially in many areas of open water in Northern oceans, according to a comparison of two datasets taken from satellites. At the same time, phytoplankton levels in open water areas near the equator have increased significantly. Since phytoplankton are especially concentrated in the North, the study found an overall annual decrease in phytoplankton globally.



The authors of the study, Watson Gregg, of NASA’s Goddard Space Flight Center, Greenbelt, Md., and Margarita Conkright, a scientist at the National Oceanic and Atmospheric Administration’s (NOAA) National Oceanographic Data Center, Silver Spring, Md., also discovered what appears to be an association between more recent regional climate changes, such as higher sea surface temperatures and reductions in surface winds, and areas where phytoplankton levels have dropped.

Phytoplankton consist of many diverse species of microscopic free-floating marine plants that serve as food to other ocean-living forms of life. "The whole marine food chain depends on the health and productivity of the phytoplankton," Gregg said.


The researchers compared two sets of satellite data -- one from 1979 to 1986 and the other from 1997 to 2000 -- that measured global ocean chlorophyll, the green pigment in plants that absorbs the Sun’s rays for energy during photosynthesis. The earlier dataset came from the Coastal Zone Color Scanner (CZCS) aboard NASA’s Nimbus-7 satellite, while the latter dataset was from the Sea-Viewing Wide Field of View Sensor (SeaWiFS) on the OrbView-2 satellite.

The researchers re-analyzed the CZCS data with the same processing methods used for the SeaWiFS data, and then blended both satellite measurements with surface observations of chlorophyll from ocean buoys and research vessels over corresponding time periods. By doing so, the researchers reduced errors and made the two records compatible.

Results indicated that phytoplankton in the North Pacific Ocean dropped by over 30 percent during summer from the mid- 80s to the present. Phytoplankton fell by 14 percent in the North Atlantic Ocean over the same time period.

Also, summer plankton concentrations rose by over 50 percent in both the Northern Indian and the Equatorial Atlantic Oceans since the mid-80s. Large areas of the Indian Ocean showed substantial increases during all four seasons.

"This is the first time that we are really talking about the ocean chlorophyll and showing that the ocean’s biology is changing, possibly as a result of climate change," said Conkright. The researchers add that it remains unclear whether the changes are due to a longer-term climate change or a shorter-term ocean cycle.

Phytoplankton thrive when sunlight is optimal and nutrients from lower layers of the ocean get mixed up to the surface. Higher sea surface temperatures can reduce the availability of nutrients by creating a warmer surface layer of water. A warmer ocean surface layer reduces mixing with cooler, deeper nutrient-rich waters. Throughout the year, winds can stir up surface waters, and create upwelling of nutrients from below, which also add to blooms. A reduction in winds can also limit the availability of nutrients.

For example, in the North Pacific, summer sea surface temperatures were .4 degrees Celsius (.7 Fahrenheit) warmer from the early 1980s to 2000, and average spring wind stresses on the ocean decreased by about 8 percent, which may have caused the declines in summer plankton levels in that region.

Phytoplankton currently account for half the transfer of carbon dioxide from the atmosphere back into the biosphere by photosynthesis, a process in which plants absorb carbon dioxide (CO2) from the air for growth. Since carbon dioxide acts as a heat-trapping gas in the atmosphere, the role phytoplankton play in removing carbon dioxide from the atmosphere helps reduce the rate at which CO2 accumulates in the atmosphere, and may help mitigate global warming.

The paper appears in the current issue of Geophysical Research Letters.



David E. Steitz | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20020801plankton.html

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>