Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cow power could generate electricity for millions

24.07.2008
Converting livestock manure into a domestic renewable fuel source could generate enough electricity to meet up to three per cent of North America’s entire consumption needs and lead to a significant reduction in greenhouse gas emissions (GHGs), according to US research published today, Thursday, 24 July, in the Institute of Physics’ Environmental Research Letters.

The journal paper, ‘Cow Power: The Energy and Emissions Benefits of Converting Manure to Biogas’, has implications for all countries with livestock as it is the first attempt to outline a procedure for quantifying the national amount of renewable energy that herds of cattle and other livestock can generate and the concomitant GHG emission reductions.

Livestock manure, left to decompose naturally, emits two particularly potent GHGs – nitrous oxide and methane. According to the Intergovernmental Panel on Climate Change, nitrous oxide warms the atmosphere 310 times more than carbon dioxide, methane does so 21 times more.

The journal paper creates two hypothetical scenarios and quantifies them to compare energy savings and GHG reducing benefits. The first is ‘business as usual’ with coal burnt for energy and with manure left to decompose naturally. The second is one wherein manure is anaerobically-digested to create biogas and then burnt to offset coal.

Through anaerobic digestion, similar to the process by which you create compost, manure can be turned into energy-rich biogas, which standard microturbines can use to produce electricity. The hundreds of millions of livestock inhabiting the US could produce approximately 100 billion kilowatt hours of electricity, enough to power millions of homes and offices.

And, as manure left to decompose naturally has a very damaging effect on the environment, this new waste management system has a net potential GHG emissions reduction of 99 million metric tonnes, wiping out approximately four per cent of the country’s GHG emissions from electricity production.

The burning of biogas would lead to the emission of some CO2 but the output from biogas-burning plants would be less than that from, for example, coal.

Authors of the paper, Dr. Michael E. Webber and Amanda D Cuellar from the University of Texas at Austin, write, “In light of the criticism that has been levelled against biofuels, biogas production from manure has the less-controversial benefit of reusing an existing waste source and has the potential to improve the environment.

“Nonetheless, the logistics of widespread biogas production, including feedstock and digestates transportation, must be determined at the local level to produce the most environmentally advantageous, economical, and energy efficient system.”

Joseph Winters | alfa
Further information:
http://www.iop.org
http://www.iop.org/EJ/journal/erl

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>