Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cow power could generate electricity for millions

24.07.2008
Converting livestock manure into a domestic renewable fuel source could generate enough electricity to meet up to three per cent of North America’s entire consumption needs and lead to a significant reduction in greenhouse gas emissions (GHGs), according to US research published today, Thursday, 24 July, in the Institute of Physics’ Environmental Research Letters.

The journal paper, ‘Cow Power: The Energy and Emissions Benefits of Converting Manure to Biogas’, has implications for all countries with livestock as it is the first attempt to outline a procedure for quantifying the national amount of renewable energy that herds of cattle and other livestock can generate and the concomitant GHG emission reductions.

Livestock manure, left to decompose naturally, emits two particularly potent GHGs – nitrous oxide and methane. According to the Intergovernmental Panel on Climate Change, nitrous oxide warms the atmosphere 310 times more than carbon dioxide, methane does so 21 times more.

The journal paper creates two hypothetical scenarios and quantifies them to compare energy savings and GHG reducing benefits. The first is ‘business as usual’ with coal burnt for energy and with manure left to decompose naturally. The second is one wherein manure is anaerobically-digested to create biogas and then burnt to offset coal.

Through anaerobic digestion, similar to the process by which you create compost, manure can be turned into energy-rich biogas, which standard microturbines can use to produce electricity. The hundreds of millions of livestock inhabiting the US could produce approximately 100 billion kilowatt hours of electricity, enough to power millions of homes and offices.

And, as manure left to decompose naturally has a very damaging effect on the environment, this new waste management system has a net potential GHG emissions reduction of 99 million metric tonnes, wiping out approximately four per cent of the country’s GHG emissions from electricity production.

The burning of biogas would lead to the emission of some CO2 but the output from biogas-burning plants would be less than that from, for example, coal.

Authors of the paper, Dr. Michael E. Webber and Amanda D Cuellar from the University of Texas at Austin, write, “In light of the criticism that has been levelled against biofuels, biogas production from manure has the less-controversial benefit of reusing an existing waste source and has the potential to improve the environment.

“Nonetheless, the logistics of widespread biogas production, including feedstock and digestates transportation, must be determined at the local level to produce the most environmentally advantageous, economical, and energy efficient system.”

Joseph Winters | alfa
Further information:
http://www.iop.org
http://www.iop.org/EJ/journal/erl

More articles from Ecology, The Environment and Conservation:

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter
31.05.2017 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>