Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae from the Ocean May Offer a Sustainable Energy Source of the Future

30.06.2008
Research by two Kansas State University scientists could help with the large-scale cultivation and manufacturing of oil-rich algae in oceans for biofuel.

K-State's Zhijian "Z.J." Pei, associate professor of industrial and manufacturing systems engineering, and Wenqiao "Wayne" Yuan, assistant professor of biological and agricultural engineering, have received a $98,560 Small Grant for Exploratory Research from the National Science Foundation to study solid carriers for manufacturing algae biofuels in the ocean.

Algae are a diverse and simple group of organisms that live in or near water. Certain algal species are high in oil content that could be converted into such fuels as biodiesel, according to Pei and Yuan. Algae also have several environmentally-friendly advantages over corn or other plants used for biofuels, including not needing soil or fresh water to grow.

Pei and Yuan plan to identify attributes of algae and properties of materials that enable growth of certain algae species on solid carriers. Solid carriers float on the water surface for algae to attach to and grow on.

"Not all materials are equally suitable to make these carriers," Yuan said. "Some materials are better for algal attachment and growth than others, and we will be identifying what those 'good' materials are."

The project could help with the design of major equipment for manufacturing algae biofuels from the ocean, including solid carriers, in-the-ocean algae harvesting equipment and oil extraction machines, Pei said.

"This research aims to develop a cost-effective process for growing algae on solid carriers in the ocean for biofuel manufacturing," he said. "If successful, it will greatly benefit the energy security of the United States, as well as society in general."

The research will be conducted with a two-step approach.

"Selected algae species will be grown on solid carriers in a simulated ocean environment and will be evaluated for their ability to attach to solid carriers and grow in seawater, their biomass productivity, and their oil content," Pei said. "Top-ranked species in step one will be selected to test the performance of several carrier materials, including natural organic, synthetic organic and inorganic materials, with the same evaluation parameters as in step one."

Pei said the properties of the highly-ranked carriers also will be analyzed.

Yuan, who has studied biodiesel for several years, said the major problem with making the fuel has been finding sustainable oil and fat sources.

"Algae seems to be the only promising sustainable oil source for biodiesel production," he said. "In my lab, we have several different projects involving algae and we have been trying different ways to grow it. We have already obtained some encouraging results."

Pei said the project also will have an educational benefit, with K-State College of Engineering graduate and undergraduate students to be involved in the multidisciplinary research.

Pei, a K-State faculty member since 2000, has expertise in new process development, process modeling of silicon wafering, and traditional and nontraditional machining processes. Pei earned his bachelor's from the Zhengzhou Institute of Technology and his master's from the Beijing Institute of Technology, both in China. His doctorate is from the University of Illinois at Urbana-Champaign.

Yuan, who joined K-State in 2006, has research interests in biofuels and biomaterials, diesel engine combustion and performance, and algae photobioreactor and bioprocessing systems. He earned his bachelor's and master's degrees from China Agricultural University, and his doctorate from the University of Illinois at Urbana-Champaign.

Zhijian "Z.J." Pei, 785-532-3436, zpei@k-state.edu;
and Wenqiao "Wayne" Yuan, 785-532-2754, wyuan@k-state.edu

Zhijian "Z.J." Pei | newswise
Further information:
http://www.k-state.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>