Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kew provides climate for agricultural change

28.05.2008
A device to help some of the most impoverished farmers in Africa maximise their crop yields is being tested at London’s Kew Gardens.

Developed by engineers at the University of Leeds, the sensor device gathers data on air temperature, humidity, air pressure, light, and soil moisture and temperature – information crucial to making key agricultural decisions about planting, fertilisation, irrigation, pest and disease control and harvesting.

It is being tested by Kew’s Diploma students and staff over the next four months in the School of Horticulture’s new student vegetable garden at the Royal Botanic Gardens, Kew. The sensors are monitoring conditions around some typical crops to test possible future applications.

The Leeds team has been working with two Kenyan villages to develop the technology as part of the Engineering and Physical Sciences Research Council (EPSRC) Village E-Science for Life (VESEL) project, a collaboration of key research groups in the UK and Kenya. The project aims to apply advanced digital technology to improve quality of life, both through its use in education and to optimise agricultural practices.

“In some areas of Kenya, localised variations in growing conditions can cause severe fluctuations in crop yields. Our part of the VESEL project is about providing the right information at the right time to farmers,” says Professor Jaafar Elmirghani from the School of Electronic and Electrical Engineering. “This means they can use available water more efficiently, minimising wastage and helping to optimise their harvests to feed their families.”

The information is fed back via a wireless network to a central hub, or server, which will be located at the village school, and is then sent to agriculture experts who will provide advice to assist farmers’ decisions. The ongoing data gathered will also feed into agricultural teaching at Kenyan schools, which forms a central part of the education system.

During the tests at Kew, the data collected by the device will be sent back to the University of Leeds, but ultimately, the management of the system will be handed over to the University of Nairobi. “This information will also inform research at the University of Nairobi - and ultimately, we hope, inform agricultural policy in Kenya”, says Professor Elmirghani. “It’s crucial that the work of the project can be sustained long term to benefit future generations.”

“We’re pleased to put these devices through their paces and give feedback to the project. Our students are keen to learn about emerging technologies, especially with such clear sustainability goals as the VESEL project”, says Kew scientist , Rowan Blaik.

The tests are expected to be complete by Autumn 2008, after which time the devices are initially to be trialled in the two Kenyan villages. “We hope that, during 2009 and beyond, the technology will be rolled out to other communities,” says Professor Elmirghani.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>