Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kew provides climate for agricultural change

28.05.2008
A device to help some of the most impoverished farmers in Africa maximise their crop yields is being tested at London’s Kew Gardens.

Developed by engineers at the University of Leeds, the sensor device gathers data on air temperature, humidity, air pressure, light, and soil moisture and temperature – information crucial to making key agricultural decisions about planting, fertilisation, irrigation, pest and disease control and harvesting.

It is being tested by Kew’s Diploma students and staff over the next four months in the School of Horticulture’s new student vegetable garden at the Royal Botanic Gardens, Kew. The sensors are monitoring conditions around some typical crops to test possible future applications.

The Leeds team has been working with two Kenyan villages to develop the technology as part of the Engineering and Physical Sciences Research Council (EPSRC) Village E-Science for Life (VESEL) project, a collaboration of key research groups in the UK and Kenya. The project aims to apply advanced digital technology to improve quality of life, both through its use in education and to optimise agricultural practices.

“In some areas of Kenya, localised variations in growing conditions can cause severe fluctuations in crop yields. Our part of the VESEL project is about providing the right information at the right time to farmers,” says Professor Jaafar Elmirghani from the School of Electronic and Electrical Engineering. “This means they can use available water more efficiently, minimising wastage and helping to optimise their harvests to feed their families.”

The information is fed back via a wireless network to a central hub, or server, which will be located at the village school, and is then sent to agriculture experts who will provide advice to assist farmers’ decisions. The ongoing data gathered will also feed into agricultural teaching at Kenyan schools, which forms a central part of the education system.

During the tests at Kew, the data collected by the device will be sent back to the University of Leeds, but ultimately, the management of the system will be handed over to the University of Nairobi. “This information will also inform research at the University of Nairobi - and ultimately, we hope, inform agricultural policy in Kenya”, says Professor Elmirghani. “It’s crucial that the work of the project can be sustained long term to benefit future generations.”

“We’re pleased to put these devices through their paces and give feedback to the project. Our students are keen to learn about emerging technologies, especially with such clear sustainability goals as the VESEL project”, says Kew scientist , Rowan Blaik.

The tests are expected to be complete by Autumn 2008, after which time the devices are initially to be trialled in the two Kenyan villages. “We hope that, during 2009 and beyond, the technology will be rolled out to other communities,” says Professor Elmirghani.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>