Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human vision inadequate for research on bird vision

13.05.2008
The most attractive male birds attract more females and as a result are most successful in terms of reproduction. This is the starting point of many studies looking for factors that influence sexual selection in birds.

However, is it reasonable to assume that birds see what we see? In a study published in the latest issue of American Naturalist, Uppsala researchers show that our human vision is not an adequate instrument.

“The results mean that many studies on sexual selection may need to be re-evaluated,” says Anders Odeen, research assistant at the Department of Animal Ecology at Uppsala University, who carried out this study with his colleague Olle Håstad.

The significance of birds’ plumage, both in terms of richness of colour and particular signals, has been shown to be a major factor in birds’ choice of partner. In order to assess the colours of birds, everything from binoculars to RGB image analyses are used. However, most studies are based on the hypothesis that human colour vision can be used to assess what birds see.

“It’s a bit like a colour blind person describing the colours of clothes – it’s often quite accurate but sometimes it can go badly wrong.”

This problem has been discussed in the research arena, but so far no study has been able to show its extent. The Uppsala researchers used a mathematical model to investigate how bird and human retina work. Using the model combined with information on differences in the colour-sensitive cones of the eye, they have been able to figure out how colour contrasts are perceived. Greater colour contrast can be translated as ‘richness of colour’ or more ‘brightly coloured’.

“We show that the colours are perceived differently in over 39 percent of cases, which means that it is possible that more than one third of previous studies have been based on inaccurate information.

The differences were partly due to the fact that human vision cannot perceive UV light, while avian vision can. There are several differences between human and avian perception of colour, which show that certain shades that can be seen clearly by birds are not perceived at all by humans. Through evolution, our colour vision has developed from a more primitive version. This means that we have gone from having two types of colour sensitive cones in our eyes to having three. Birds have four.

“Most other animal species only have two, which means that their colour vision is rudimentary. It is human colour vision that differs from the norm, so in reality it’s ridiculous to use our colour vision to assess the colours of other animals.

The results are not only significant for basic research on sexual selection. They also illustrate the risks of making certain decisions on the basis of human vision, for example, in designing and legislating on lighting systems for domestic fowl.

Anneli Waara | alfa
Further information:
http://www.journals.uchicago.edu/doi/abs/10.1086/587529
http://www.uu.se

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>