Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find mercury threatens next generation of loons

06.03.2008
A long-term study by the Wildlife Conservation Society, the BioDiversity Research Institute, and other organizations has found and confirmed that environmental mercury—much of which comes from human-generated emissions—is impacting both the health and reproductive success of common loons in the Northeast.

The results of the 18-year study on loons—a species symbolic of northern lakes and wilderness—appear in the most recent edition of Ecotoxicology.

“This study demonstrates how top predators such as common loons can be used as the proverbial ‘canaries-in-the-coalmine’ for pollutants that concern humans as well,” said David C. Evers of the BioDiversity Research Institute and lead author of the study. “Our findings can be used to facilitate national and global decisions for regulating mercury emissions from coal-burning plants and other sources.”

The study uses data from nearly 5,500 samples of blood, feathers, and eggs collected from captured and released loons from some 80 lakes in Maine, New York, New Hampshire, and other states and provinces. The researchers made correlations between the behaviors of individual birds and their levels of methylmercury, the most toxic form of mercury that accumulates up the food chain.

Loons with high levels of mercury—about 16 percent of the adult population in the study area—were found to spend some 14 percent less time at the nest than normally behaving birds. Unattended nests have a higher rate of failure due to either chilling of the eggs or predation by minks, otters, raccoons and other egg robbers.

With behavioral observations from 1,529 loon territories between 1996 and 2005, researchers found that loon pairs with elevated mercury levels also produced 41 percent fewer fledged young than loons in lakes relatively free of mercury. Other behavioral impacts due to elevated mercury were sluggishness, resulting in decreased foraging for fish by the adults for both themselves and for chicks.

In addition to behavior, the concentration of mercury in loons has physiological impacts as well.

Researchers found that loons with high mercury loads have unevenly sized flight feathers. Birds with wing asymmetries of more than 5 percent must expend 20 percent more energy than normal birds to fly, a deficiency that may impact their ability to migrate and maintain a breeding territory.

“This study confirms what we’ve long suspected—mercury from human activities such as coal-burning power plants—is having a significant negative impact on the environment and the health of its most charismatic denizens, and potentially, to humans, too,” said Nina Schoch of the Wildlife Conservation Society’s Adirondack Program. “Thus, it becomes even more urgent for the EPA to propose effective national regulations for mercury emissions from power plants that are based on sound science.”

Although many northeastern states have implemented stringent mercury emission rules, a nationwide regulation has yet to be passed. The U.S. District Court of Appeals recently struck down the EPA’s proposed Cap-and-Trade Rule for mercury emissions from coal-fired power plants, which would have led to localized “hotspots” of mercury, a highly toxic pollutant. “The ecological impacts of mercury identified in this study illustrate the need for comprehensive, national regulations to limit mercury emissions,” added Schoch.

John Delaney | EurekAlert!
Further information:
http://www.wcs.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>