Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find mercury threatens next generation of loons

06.03.2008
A long-term study by the Wildlife Conservation Society, the BioDiversity Research Institute, and other organizations has found and confirmed that environmental mercury—much of which comes from human-generated emissions—is impacting both the health and reproductive success of common loons in the Northeast.

The results of the 18-year study on loons—a species symbolic of northern lakes and wilderness—appear in the most recent edition of Ecotoxicology.

“This study demonstrates how top predators such as common loons can be used as the proverbial ‘canaries-in-the-coalmine’ for pollutants that concern humans as well,” said David C. Evers of the BioDiversity Research Institute and lead author of the study. “Our findings can be used to facilitate national and global decisions for regulating mercury emissions from coal-burning plants and other sources.”

The study uses data from nearly 5,500 samples of blood, feathers, and eggs collected from captured and released loons from some 80 lakes in Maine, New York, New Hampshire, and other states and provinces. The researchers made correlations between the behaviors of individual birds and their levels of methylmercury, the most toxic form of mercury that accumulates up the food chain.

Loons with high levels of mercury—about 16 percent of the adult population in the study area—were found to spend some 14 percent less time at the nest than normally behaving birds. Unattended nests have a higher rate of failure due to either chilling of the eggs or predation by minks, otters, raccoons and other egg robbers.

With behavioral observations from 1,529 loon territories between 1996 and 2005, researchers found that loon pairs with elevated mercury levels also produced 41 percent fewer fledged young than loons in lakes relatively free of mercury. Other behavioral impacts due to elevated mercury were sluggishness, resulting in decreased foraging for fish by the adults for both themselves and for chicks.

In addition to behavior, the concentration of mercury in loons has physiological impacts as well.

Researchers found that loons with high mercury loads have unevenly sized flight feathers. Birds with wing asymmetries of more than 5 percent must expend 20 percent more energy than normal birds to fly, a deficiency that may impact their ability to migrate and maintain a breeding territory.

“This study confirms what we’ve long suspected—mercury from human activities such as coal-burning power plants—is having a significant negative impact on the environment and the health of its most charismatic denizens, and potentially, to humans, too,” said Nina Schoch of the Wildlife Conservation Society’s Adirondack Program. “Thus, it becomes even more urgent for the EPA to propose effective national regulations for mercury emissions from power plants that are based on sound science.”

Although many northeastern states have implemented stringent mercury emission rules, a nationwide regulation has yet to be passed. The U.S. District Court of Appeals recently struck down the EPA’s proposed Cap-and-Trade Rule for mercury emissions from coal-fired power plants, which would have led to localized “hotspots” of mercury, a highly toxic pollutant. “The ecological impacts of mercury identified in this study illustrate the need for comprehensive, national regulations to limit mercury emissions,” added Schoch.

John Delaney | EurekAlert!
Further information:
http://www.wcs.org

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>