Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissolved organic matter in the water column may influence coral health

05.03.2008
Bacterial communities endemic to healthy corals could change depending on the amount and type of natural and man-made dissolved organic matter in seawater, report researchers from The University of Texas at Austin Marine Science Institute and Mote Marine Laboratory in Sarasota, Florida.

Healthy corals naturally exude a surrounding mucous layer in which a complex population of bacteria exists. Recent studies have indicated that some coral diseases may be linked to community shifts in this bacterial population.

In experiments with a common reef building coral in the Florida Keys, Chris Shank of the University of Texas Marine Science Institute and Kim Ritchie of Mote Marine Laboratory found an obvious shift in the composition of the coral bacterial community resulting from changes in the pool of surrounding dissolved organic matter.

Dissolved organic matter in the water column near Florida Keys coral reefs comes from a variety of natural sources, including coastal mangroves, seagrasses, and plankton, as well as man-made sources, including sewage effluent. The composition of dissolved organic matter surrounding Florida Keys coral reefs has likely changed in recent decades due to growing coastal populations.

“When coastal ecosystems are physically altered, the natural flow of dissolved organic material to nearby coral ecosystems is disrupted with potentially harmful consequences for the corals,” said Shank, assistant professor of marine science.

Shank and Ritchie, manager of the Marine Microbiology Program at Mote, placed Montastraea faveolata coral fragments in aquaria filled with water collected from either Florida Bay or from an offshore bluewater site.

Dissolved organic matter concentrations are much greater in Florida Bay than in offshore waters and typically have different chemical characteristics. Water collected from these distinct locations used for the coral incubation experiments represented the variable nature of dissolved organic matter experienced by corals in the middle and lower Florida Keys.

They found that the microbial community of healthy corals shifts measurably when exposed to water from Florida Bay, suggesting the microbes that normally play a role in coral immunity may be out-competed by potentially problematic bacteria. In combination with increased water temperatures, this is an example of the type of compounded stressors known to cause health problems in corals, or “reef deterioration.”

The scientists reported their results today at the Ocean Sciences Meeting in Orlando, Florida.

The scientists’ research is part of their larger effort to investigate the link between alterations to the south Florida ecosystem and Florida Keys coral ecosystems. Coral reefs there, as with coral reefs around the world, are increasingly threatened by rising water temperatures, advancing ocean acidification and rapidly rising coastal populations.

Corals are especially susceptible to coastal alterations because they commonly exist in shallow waters at the interface of land and sea.

Shank and Ritchie are planning a series of experiments to more closely evaluate the chemical nature of the water column dissolved organic matter surrounding the corals in the Florida Keys and identify shifts in potentially harmful bacterial populations.

Chris Shank | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>