Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissolved organic matter in the water column may influence coral health

05.03.2008
Bacterial communities endemic to healthy corals could change depending on the amount and type of natural and man-made dissolved organic matter in seawater, report researchers from The University of Texas at Austin Marine Science Institute and Mote Marine Laboratory in Sarasota, Florida.

Healthy corals naturally exude a surrounding mucous layer in which a complex population of bacteria exists. Recent studies have indicated that some coral diseases may be linked to community shifts in this bacterial population.

In experiments with a common reef building coral in the Florida Keys, Chris Shank of the University of Texas Marine Science Institute and Kim Ritchie of Mote Marine Laboratory found an obvious shift in the composition of the coral bacterial community resulting from changes in the pool of surrounding dissolved organic matter.

Dissolved organic matter in the water column near Florida Keys coral reefs comes from a variety of natural sources, including coastal mangroves, seagrasses, and plankton, as well as man-made sources, including sewage effluent. The composition of dissolved organic matter surrounding Florida Keys coral reefs has likely changed in recent decades due to growing coastal populations.

“When coastal ecosystems are physically altered, the natural flow of dissolved organic material to nearby coral ecosystems is disrupted with potentially harmful consequences for the corals,” said Shank, assistant professor of marine science.

Shank and Ritchie, manager of the Marine Microbiology Program at Mote, placed Montastraea faveolata coral fragments in aquaria filled with water collected from either Florida Bay or from an offshore bluewater site.

Dissolved organic matter concentrations are much greater in Florida Bay than in offshore waters and typically have different chemical characteristics. Water collected from these distinct locations used for the coral incubation experiments represented the variable nature of dissolved organic matter experienced by corals in the middle and lower Florida Keys.

They found that the microbial community of healthy corals shifts measurably when exposed to water from Florida Bay, suggesting the microbes that normally play a role in coral immunity may be out-competed by potentially problematic bacteria. In combination with increased water temperatures, this is an example of the type of compounded stressors known to cause health problems in corals, or “reef deterioration.”

The scientists reported their results today at the Ocean Sciences Meeting in Orlando, Florida.

The scientists’ research is part of their larger effort to investigate the link between alterations to the south Florida ecosystem and Florida Keys coral ecosystems. Coral reefs there, as with coral reefs around the world, are increasingly threatened by rising water temperatures, advancing ocean acidification and rapidly rising coastal populations.

Corals are especially susceptible to coastal alterations because they commonly exist in shallow waters at the interface of land and sea.

Shank and Ritchie are planning a series of experiments to more closely evaluate the chemical nature of the water column dissolved organic matter surrounding the corals in the Florida Keys and identify shifts in potentially harmful bacterial populations.

Chris Shank | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>