Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanosieves save energy in biofuel production

08.02.2008
A new type of membrane, developed by scientists of the University of Twente in The Netherlands, can stand high temperatures for a long period of time.

This ‘molecular sieve’ is capable of removing water out of e.g. solvents and biofuels. It is a very energy efficient alternative to existing techniques like distillation. The scientists, who cooperated with colleagues from the Energy research Centre of the Netherlands (ECN) and the University of Amsterdam, present their invention in Chemical Communications of this week.

Even after testing during 18 months, the new membranes prove to be highly effective, while having continuously been exposed to a temperature of 150 ºC. Existing ceramic and polymer membranes will last considerably shorter periods of time, when exposed to the combination of water and high temperatures. The scientists managed to do this using a new ‘hybrid’ type of material combining the best of both worlds of polymer and ceramic membranes. The result is a membrane with pores sufficiently small to let only the smallest molecules pass through.

Ceramic membranes, made of silica, degrade because they react with water and steam. In the new membrane, part of the ceramic links is therefore replaced by organic links. By doing this, water doesn’t have the chance to ‘attack’ the membranes. Manufacturing the new hybrid membranes is simpler than that of ceramic membranes, because the material is flexible and will not show cracks. What they have in common with ceramic membranes is the rapid flow: an advantage of this is that the membrane surface can be kept small.

The hybrid membranes are suitable for ‘drying’ solvents and biofuels, an application for which there is a large potential market worldwide. The main advantage of membrane technology is that it consumes far less energy than common distillation techniques. The scientists also foresee opportunities in separating hydrogen gas from gas mixtures. This implies a broad range of applications in sustainable energy. Apart from that, the hybrid membranes are suitable for desalinating water. Using a hybrid membrane that is much smaller than the current polymer membranes, the same result can be achieved.

The results have been achieved in a close cooperation of scientists from the Inorganic Materials Science Group of the MESA+ Institute for Nanotechnology (UT), the Energy Efficiency in Industry department of ECN and the University of Amsterdam. The invention has been patented worldwide.

The article ‘Hybrid ceramic nanosieves: stabilizing nanopores with organic links’ by Hessel Castricum, Ashima Sah, Robert Kreiter, Dave Blank, Jaap Vente and André ten Elshof has been published in Chemical Communications (ChemComm) of the Royal Society of Chemistry in de UK.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/en

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>