Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The severity of side-effects after salmon vaccination depends on the antigen composition

10.01.2008
During the course of his doctoral studies, Stephen Mutoloki examined tissue reactions of salmon to oil-based vaccines and elucidated the components that play a significant role in the development of these reactions.

Vaccines are used in aquaculture to avoid outbreaks of infection from bacteria and viruses. If given at the start of the sea-water phase, oil-based vaccines provide protection against bacterial infection for the entire life in the animal.

However, oil-based vaccines produce local side-effects in the form of pigmentation and adhesions between internal organs, which in some cases are severe enough to reduce the carcase quality at slaughter. The underlying mechanisms of side-effect development are little known.

Stephen Mutoloki discovered that the reaction to the vaccine, and especially to the bacterial component of the vaccine, comes in several “waves”. These waves consist of cells that migrate to the injection site, and in the van of these is the “rapid-response troop”, the neutrophilic granulocytes. These are followed by the “clean-up team”, the macrophages, and later still by the cells that provide the actual protection against disease later in life, the lymphocytes.

This is the same sequence one finds in a natural infection and is the result of a collaboration between the processes of inflammation and of immunity. How aggressive the reaction within the tissue is, depends on how many granulocytes that are involved and how many clean-up cells arrive.

The main findings in Dr. Mutoloki’s work show that the species has a lot to say for how effectively the “clean-up” progresses. The rainbow trout has in general more effective cleaning-up cells, while the Atlantic salmon does a poorer job with a correspondingly greater and longer-lasting tissue reaction. The clean-up phase is also affected by the vaccine’s composition, that is, the more unrefined a vaccine, the more inflammatory cells that will accumulate and the greater the tissue reaction.

The type of antigen in the vaccine is also significant. Moritella viscosa is, for example, more difficult to clean up after than Aeromonas salmonicida. And if the vaccinated fish uses more resources to clean up than to create immunity against future infections, the tissue relation may become too dominating and produce unwanted side-effects.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no/105/English/7899/The-severity-of-side-effects-after-salmon-vaccination-depends-on-the-antigen-composition/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>