Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The removal of the “super-polluters” will reduce pollution from nanoparticles by 25%

17.10.2008
A study undertaken by researchers from the University of Alcalá (UAH) shows that if the “super-polluters”, the high-polluting vehicles, such as certain buses and lorries in a poor condition, were removed, pollution from nanoparticles could be reduced by up to 25% and 48%, depending on the parameter analysed. These minute particles cause serious health problems.

“Usually you can see the ‘super-polluters’ simply just by looking; particularly when they accelerate or climb a hill and a cloud of smoke comes out of the exhaust pipe”, comments the physicist Philip Siegmann, from the Department of Signal Theory and Communications at the University of Alcalá (UAH) and co-author of the study.

“People usually complain about the bad smell and the smoke, but the worst thing is that the nanoparticles that nobody can actually see or smell are always present in Madrid, for example, even when you think that you are breathing in clean air” the researcher points out to SINC.

The new study confirms that the “super-polluters” are, “by far”, the vehicles that emit the largest amount of nanoparticles. The report concludes that were these vehicles removed from the flow of traffic, the “total active surface” (TAS) concentration of the nanoparticles (the particle surface that interacts with the environment) could be reduced by up to 25%, and the concentration of particulate polycyclic aromatic hydrocarbons (PPAH) absorbed by the nanoparticles, which are known toxic substances, could be reduced by up to 48%.

The study, published recently in the review entitled Atmospheric Environment, has focused on distinguishing and quantifying which types of vehicles have a higher emission rate of nano- particles, namely the ultra-fine ones (less than 100 nm in size), that are implicated in the development of different diseases. Their reduced size enables them to be distributed within the body with hardly any detection by the defences of the organism, and can even cross the cell membranes. Some studies have already shown that these small particles stimulate allergic reactions, such as asthma, and the development of multiple sclerosis. Moreover, under continued and prolonged exposure, they can produce cancer, as is the case with tobacco.

The researchers have noted that one of the main emission sources of these ultra-fine particles comes from diesel powered vehicles, but this is less so for petrol powered vehicles. “In any case, it is the super-polluters that pollute the most, since these are usually the ones in poor working condition and with poor combustion” Siegmann points out. The expert considers that these vehicles need to be removed from the traffic flow.

In order to obtain measurements, the scientists had to follow moving vehicles and, through the window, record the data using two sensors located at the end of a tube. The recordings were taken every ten seconds and were made by sucking in the air so that the sensors could pick up the measurement peaks when they entered the trail of smoke emitted by a vehicle. In the case of the “super-polluters”, the PPAH measurement peaks ranged from 100 to 1,000 nm/m3, but in some cases this even exceeded this high quantity.

Less nanoparticle pollution in Madrid

The study data were taken in Madrid in 2001 and 2006 and in Mexico City in 2001, one of the most polluted cities in the world. Although they do not appear in the report, measurements were also taken in Boston (USA). The highest number of emissions of nanoparticles corresponded to Madrid, and the scientists relate the data to the fact that a high percentage of the cars in this city are diesel (nearly 30% in 1999-2001 and 50% in 2006), whereas in Boston there are fewer emissions of this type because nearly all the vehicles travelling on the roads are petrol driven. Mexico City finds itself in the middle, although there is a plethora of “super-polluters” in this city.

Nevertheless, in Madrid, the results confirm that over the last 6 years pollution from nanoparticles has reduced by nearly 65%. The researchers justify this because of the improvements that have been incorporated into new vehicles in order to comply with the European regulations regarding emissions, such as the ‘Euro 4’ level which will be replaced by the ‘Euro 5’ level in 2009.

Despite this, Siegmann recognises that ‘super-polluters’ are still on the roads in this city. “Anybody who is waiting at a bus-stop will have suffered from a cloud of smoke emitted by a bus as it accelerates”, he adds, “and in this cloud of smoke large quantities of all types of particles, including nanoparticles, are being emitted“.

Nanoparticles mainly come from human activities such as the combustion of coal, incinerators, vehicles, burning of rubbish, kitchens, barbecues and tobacco, but they can also be natural in origin, such as those emitted by volcanoes. In any event, the exposure of the human being to these substances has increased as a consequence of the industrial development throughout the 20th century, particularly with the advent of diesel driven cars, with the consequent health problems.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>