Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record high for global carbon emissions

03.12.2012
UEA research shows record high for global carbon emissions

Global carbon dioxide (CO2) emissions are set to rise again in 2012, reaching a record high of 35.6 billion tonnes - according to new figures from the Global Carbon Project, co-led by researchers from the Tyndall Centre for Climate Change Research at the University of East Anglia (UEA).

The 2.6 per cent rise projected for 2012 means global emissions from burning fossil fuel are 58 per cent above 1990 levels, the baseline year for the Kyoto Protocol.

This latest analysis by the Global Carbon Project is published today in the journal Nature Climate Change with full data released simultaneously by the journal Earth System Science Data Discussions.

It shows the biggest contributors to global emissions in 2011 were China (28 per cent), the United States (16 per cent), the European Union (11 per cent), and India (7 per cent).

Emissions in China and India grew by 9.9 and 7.5 per cent in 2011, while those of the United States and the European Union decreased by 1.8 and 2.8 per cent.

Emissions per person in China of 6.6 tonnes of CO2 were nearly as high as those of the European Union (7.3), but still below the 17.2 tonnes of carbon used in the United States. Emissions in India were lower at 1.8 tonnes of carbon per person.

Prof Corinne Le Quéré, director of the Tyndall Centre for Climate Change Research and professor at UEA, led the publication of the data. She said: "These latest figures come amidst climate talks in Doha. But with emissions continuing to grow, it's as if no-one is listening to the entire scientific community."

The 2012 rise further opens the gap between real-world emissions and those required to keep global warming below the international target of two degrees.

"I am worried that the risks of dangerous climate change are too high on our current emissions trajectory. We need a radical plan," added Prof Corinne Le Quéré.

The analysis published in Nature Climate Change shows significant emission reductions are needed by 2020 to keep two degrees as a feasible goal.

It shows previous energy transitions in Belgium, Denmark, France, Sweden, and the UK have led to emission reductions as high as 5 per cent each year over decade-long periods, even without climate policy.

Lead author Dr Glen Peters, of the Centre for International Climate and Environmental Research in Norway, said: "Scaling up similar energy transitions across more countries can kick-start global mitigation with low costs. To deepen and sustain these energy transitions in a broad range of countries requires aggressive policy drivers."

Co-author Dr Charlie Wilson, of the Tyndall Centre at UEA, added: "Public policies and institutions have a central role to play in supporting the widespread deployment of low carbon and efficient energy-using technologies, and in supporting innovation efforts".

Emissions from deforestation and other land-use change added 10 per cent to the emissions from burning fossil fuels. The CO2 concentration in the atmosphere reached 391 parts per million (ppm) at the end of 2011.

These results lends further urgency to recent reports that current emissions pathways are already dangerously high and could lead to serious impacts and high costs on society. These other analyses come from the International Energy Agency, the United Nations Environment Programme, the World Bank, the European Environment Agency, and PricewaterhouseCoopers.

The December edition of Nature Climate Change contains three more research papers from Tyndall Centre authors: 'Equity and state representations in climate negotiations' by Heike Schroeder of UEA; 'Changing Social Contracts in Climate Change Adaptation' with Irene Lorenzoni and Tara Quinn of UEA; and 'Proportionate adaptation' by Jim Hall at Oxford University and colleagues from the Tyndall Centres at Southampton University, Cardiff and UEA.

'The mitigation challenge to stay below two degrees' by G.P. Peters, R.M. Andrew, T. Boden, J.G. Canadell, P. Ciais, C. Le Quéré, G. Marland, M.R. Raupach, C. Wilson is published online by Nature Climate Change. http://bit.ly/Qpt3ub (online from Dec 2, 2012, 1800 GMT).

Full details of the methods and data used are presented in: 'The Global Carbon Budget 1959' by C. Le Quéré, R. J. Andres, T. Boden, T. Conway, R. A. Houghton, J. I. House, G. Marland, G. P. Peters, G. van der Werf, A. Ahlström, R. M. Andrew, L. Bopp, J. G. Canadell, P. Ciais, S. C. Doney, C. Enright, P. Friedlingstein, C. Huntingford, A. K. Jain, C. Jourdain, E. Kato, R. Keeling, K. Klein Goldewijk, S. Levis, P. Levy, M. Lomas, B. Poulter, M. Raupach, J. Schwinger, S. Sitch, B. D. Stocker, N. Viovy, S. Zaehle and N. Zeng, Earth System Science Data Discussions. http://bit.ly/UY8GTQ (online from Dec 2, 2012! , 1800 GMT).

Lisa Horton | EurekAlert!
Further information:
http://www.uea.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>