Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Producer responsibility solution to electronic waste in developing countries

12.09.2011
How can legislation be used to avoid hazardous waste being dumped where it could poison people and the environment in developing countries?

Introducing producer responsibility could be one solution, says Panate Manomaivibool of the International Institute for Industrial Environmental Economics (IIIEE) at Lund University, Sweden, in a new thesis.

In recent years, the problems of waste electrical and electronic equipment (WEEE) in China, India and various African countries have been highlighted. Unregulated recycling in these countries has led to toxic substances such as lead and mercury from televisions, PVC from wire coating and brominated flame retardants from plastics leaching into the environment and poisoning people. Both the poor people who work with recycling and local residents have been affected.

Initially, a lot of the hazardous electrical and electronic waste was exported from the West in breach of the Basel Convention. More recent studies also show that WEEE from domestic consumption has increased sharply in emerging and developing economies. Faced with this growing problem, a number of these countries are now developing systems and legislation for the management of WEEE.

Panate Manomaivibool’s thesis shows how lessons can be learnt from the OECD countries’ solutions when tackling the problem and developing relevant legislation.

Producer responsibility is a key part of the solution. It creates incentives not only to improve the recyclability of the product but also to improve other aspects of the product system. This could mean better waste management technology and methods or changes to the design of products to facilitate waste management. This helps to reduce the amount of toxic substances in the materials and components.

Producers can be given responsibility for WEEE in a number of different ways. In Europe, for example, manufacturers often join forces and form collective producer responsibility organisations, which manage the collection and recycling of products on their behalf, free of charge to householders.

In Japan, obsolete products are returned to retailers and then sorted according to manufacturer. The major manufacturers have their own recycling facilities. This system has been effective in engaging the manufacturers in learning about recycling and stimulating product redesign.

There are good opportunities to apply producer responsibility for WEEE in non-OECD countries. The levels of this waste are still relatively low, which means that effective preventive measures can still be taken for the future growth in WEEE. For example, producers could be required to phase out hazardous substances and provide recycling guarantees for new products before they come onto the market. The countries also benefit from the fact that many manufacturers of ICT are working to develop systems to deal with obsolete products. Many of them are multinational companies with long experience of producer responsibility from OECD countries.

However, there are challenges involved in introducing producer responsibility. One problem is that it can be difficult to identify the producers of counterfeit or non-branded goods, and another is that the polluted informal recycling sector competes for recyclable material. These challenges are nonetheless manageable. Large companies which supply components for non-branded products, for example ‘white-box’ computers, can be made responsible instead of pursuing the small assemblers. It is important that fees collected can be used to support the recycling facilities that operate legally.

“In order to succeed, the politicians in non-OECD countries need to take on the challenges that exist by exploiting the full potential of producer responsibility. They have the privilege of being able to learn from the successes and mistakes of the OECD countries. In combination with an understanding of the context of their own country, there are good opportunities for them to design and run a programme that rewards producers who develop their products in a way that improves their environmental performance”, says Panate Manomaivibool.

The thesis, Advancing the Frontier of Extended Producer Responsibility The management of waste electrical and electronic equipment in non-OECD countries was defended on 9 September at the International Institute for Industrial Environmental Economics at Lund University.

For more information, please contact Panate Manomaivibool on panate.manomaivibool@iiiee.lu.se, +46 46 222 02 59 or +46 735 62 56 79.

Advancing the Frontier of Extended Producer Responsibility The management of waste electrical and electronic equipment in non-OECD countries

Megan Grindlay | idw
Further information:
http://www.lu.se
http://www.lunduniversity.lu.se/o.o.i.s?id=12683&postid=2062478

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>