Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Producer responsibility solution to electronic waste in developing countries

12.09.2011
How can legislation be used to avoid hazardous waste being dumped where it could poison people and the environment in developing countries?

Introducing producer responsibility could be one solution, says Panate Manomaivibool of the International Institute for Industrial Environmental Economics (IIIEE) at Lund University, Sweden, in a new thesis.

In recent years, the problems of waste electrical and electronic equipment (WEEE) in China, India and various African countries have been highlighted. Unregulated recycling in these countries has led to toxic substances such as lead and mercury from televisions, PVC from wire coating and brominated flame retardants from plastics leaching into the environment and poisoning people. Both the poor people who work with recycling and local residents have been affected.

Initially, a lot of the hazardous electrical and electronic waste was exported from the West in breach of the Basel Convention. More recent studies also show that WEEE from domestic consumption has increased sharply in emerging and developing economies. Faced with this growing problem, a number of these countries are now developing systems and legislation for the management of WEEE.

Panate Manomaivibool’s thesis shows how lessons can be learnt from the OECD countries’ solutions when tackling the problem and developing relevant legislation.

Producer responsibility is a key part of the solution. It creates incentives not only to improve the recyclability of the product but also to improve other aspects of the product system. This could mean better waste management technology and methods or changes to the design of products to facilitate waste management. This helps to reduce the amount of toxic substances in the materials and components.

Producers can be given responsibility for WEEE in a number of different ways. In Europe, for example, manufacturers often join forces and form collective producer responsibility organisations, which manage the collection and recycling of products on their behalf, free of charge to householders.

In Japan, obsolete products are returned to retailers and then sorted according to manufacturer. The major manufacturers have their own recycling facilities. This system has been effective in engaging the manufacturers in learning about recycling and stimulating product redesign.

There are good opportunities to apply producer responsibility for WEEE in non-OECD countries. The levels of this waste are still relatively low, which means that effective preventive measures can still be taken for the future growth in WEEE. For example, producers could be required to phase out hazardous substances and provide recycling guarantees for new products before they come onto the market. The countries also benefit from the fact that many manufacturers of ICT are working to develop systems to deal with obsolete products. Many of them are multinational companies with long experience of producer responsibility from OECD countries.

However, there are challenges involved in introducing producer responsibility. One problem is that it can be difficult to identify the producers of counterfeit or non-branded goods, and another is that the polluted informal recycling sector competes for recyclable material. These challenges are nonetheless manageable. Large companies which supply components for non-branded products, for example ‘white-box’ computers, can be made responsible instead of pursuing the small assemblers. It is important that fees collected can be used to support the recycling facilities that operate legally.

“In order to succeed, the politicians in non-OECD countries need to take on the challenges that exist by exploiting the full potential of producer responsibility. They have the privilege of being able to learn from the successes and mistakes of the OECD countries. In combination with an understanding of the context of their own country, there are good opportunities for them to design and run a programme that rewards producers who develop their products in a way that improves their environmental performance”, says Panate Manomaivibool.

The thesis, Advancing the Frontier of Extended Producer Responsibility The management of waste electrical and electronic equipment in non-OECD countries was defended on 9 September at the International Institute for Industrial Environmental Economics at Lund University.

For more information, please contact Panate Manomaivibool on panate.manomaivibool@iiiee.lu.se, +46 46 222 02 59 or +46 735 62 56 79.

Advancing the Frontier of Extended Producer Responsibility The management of waste electrical and electronic equipment in non-OECD countries

Megan Grindlay | idw
Further information:
http://www.lu.se
http://www.lunduniversity.lu.se/o.o.i.s?id=12683&postid=2062478

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>