Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants save the earth from an icy doom

03.07.2009
Fifty million years ago, the North and South Poles were ice-free and crocodiles roamed the Arctic. Since then, a long-term decrease in the amount of CO2 in the atmosphere has cooled the Earth.

Researchers at Yale University, the Carnegie Institution of Washington and the University of Sheffield now show that land plants saved the Earth from a deep frozen fate by buffering the removal of atmospheric CO2 over the past 24 million years.

While the upper limit for atmospheric CO2 levels has been a focus for discussions of global warming and the quality of life on Earth, this study points to the dynamics that maintain the lower sustainable limits of atmospheric CO2.

Volcanic gases naturally add CO2 to the atmosphere, and over millions of years CO2 is removed by the weathering of silica-based rocks like granite and then locked up in carbonates on the floor of the world's oceans. The more these rocks are weathered, the more CO2 is removed from the atmosphere.

"Mountain building in places like Tibet and South America during the past 25 million years created conditions that should have sucked nearly all the CO2 out of the atmosphere, throwing the Earth into a deep freeze," said senior author Mark Pagani, associate professor of geology and geophysics and a member of the Yale Climate and Energy Institute's executive committee. "But as the CO2 concentration of Earth's atmosphere decreased to about 200 to 250 parts per million, CO2 levels stabilized."

The study, published in the XX issue of Nature, looked for a possible explanation They used simulations of the global carbon cycle and observations from plant growth experiments to show that as atmospheric CO2 concentrations began to drop towards near-starvation levels for land plants, the capacity of plants and vegetation to weather silicate rocks greatly diminished, slowing the draw-down of atmospheric CO2.

"When CO2 levels become suffocatingly low, plant growth is compromised and the health of forest ecosystems suffer," said Pagani. "When this happens, plants can no longer help remove CO2 from the atmosphere faster than volcanoes and other sources can supply it."

"Ultimately, we owe another large debt to plants" said co-author Ken Caldeira from the Carnegie Institution of Washington at Stanford University. "Aside from providing zesty dishes like eggplant parmesan, plants have also stabilized Earth's climate by inhibiting critically low levels of CO2 that would have thrown Earth spinning into space like a frozen ice ball."

Co-author David Beerling from Sheffield University adds, "Our research supports the emerging view that plants should be recognized as a geologic force of nature, with important consequences for all life on Earth"

Robert Berner, professor emeritus of geology and geophysics at Yale, is also an author on the study. The Yale Climate and Energy Institute; the National Science Foundation; the Department of Energy; the Leverhulme Trust and a Royal Society-Wolfson Research Merit Award supported the research.

The Yale Climate and Energy Institute (YCEI) is a newly established interdisciplinary institute focused on bridging research and policy around climate and energy issues so that practical solutions can be implemented in both the developing and developed world.

An interview with Mark Pagani is available at http://tinyurl.com/yale-pagani-052909

Citation: Nature, (doi:10.1038/nature08133)

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>