Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plants save the earth from an icy doom

Fifty million years ago, the North and South Poles were ice-free and crocodiles roamed the Arctic. Since then, a long-term decrease in the amount of CO2 in the atmosphere has cooled the Earth.

Researchers at Yale University, the Carnegie Institution of Washington and the University of Sheffield now show that land plants saved the Earth from a deep frozen fate by buffering the removal of atmospheric CO2 over the past 24 million years.

While the upper limit for atmospheric CO2 levels has been a focus for discussions of global warming and the quality of life on Earth, this study points to the dynamics that maintain the lower sustainable limits of atmospheric CO2.

Volcanic gases naturally add CO2 to the atmosphere, and over millions of years CO2 is removed by the weathering of silica-based rocks like granite and then locked up in carbonates on the floor of the world's oceans. The more these rocks are weathered, the more CO2 is removed from the atmosphere.

"Mountain building in places like Tibet and South America during the past 25 million years created conditions that should have sucked nearly all the CO2 out of the atmosphere, throwing the Earth into a deep freeze," said senior author Mark Pagani, associate professor of geology and geophysics and a member of the Yale Climate and Energy Institute's executive committee. "But as the CO2 concentration of Earth's atmosphere decreased to about 200 to 250 parts per million, CO2 levels stabilized."

The study, published in the XX issue of Nature, looked for a possible explanation They used simulations of the global carbon cycle and observations from plant growth experiments to show that as atmospheric CO2 concentrations began to drop towards near-starvation levels for land plants, the capacity of plants and vegetation to weather silicate rocks greatly diminished, slowing the draw-down of atmospheric CO2.

"When CO2 levels become suffocatingly low, plant growth is compromised and the health of forest ecosystems suffer," said Pagani. "When this happens, plants can no longer help remove CO2 from the atmosphere faster than volcanoes and other sources can supply it."

"Ultimately, we owe another large debt to plants" said co-author Ken Caldeira from the Carnegie Institution of Washington at Stanford University. "Aside from providing zesty dishes like eggplant parmesan, plants have also stabilized Earth's climate by inhibiting critically low levels of CO2 that would have thrown Earth spinning into space like a frozen ice ball."

Co-author David Beerling from Sheffield University adds, "Our research supports the emerging view that plants should be recognized as a geologic force of nature, with important consequences for all life on Earth"

Robert Berner, professor emeritus of geology and geophysics at Yale, is also an author on the study. The Yale Climate and Energy Institute; the National Science Foundation; the Department of Energy; the Leverhulme Trust and a Royal Society-Wolfson Research Merit Award supported the research.

The Yale Climate and Energy Institute (YCEI) is a newly established interdisciplinary institute focused on bridging research and policy around climate and energy issues so that practical solutions can be implemented in both the developing and developed world.

An interview with Mark Pagani is available at

Citation: Nature, (doi:10.1038/nature08133)

Suzanne Taylor Muzzin | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>