Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Following Phragmites Home: Scientists Use Satellite Data to Map Invasive Species in Great Lakes Wetlands

18.12.2012
Phragmites australis, an invasive species of plant called common reed, grows rapidly into dense stands of tall plants that pose an extreme threat to Great Lakes coastal wetlands. Early treatment is the key to controlling Phragmites.

But how can these invasive reeds be eradicated before they take over their environment if we don’t know where they are?


Invasive wetlands Phragmites tower over 5-foot-tall Michigan Tech Research Institute intern Naomi Hamermesh (now a MTRI employee).

Now we do know, thanks to scientists from Michigan Technological University’s Michigan Tech Research Institute (MTRI), the US Geological Survey (USGS), Boston College and the US Fish and Wildlife Service (USFWS). They mapped the US coastline of all five Great Lakes using satellite technologies. Combined with field studies along those coastlines to confirm the satellite data, the map shows the locations of large stands of the invasive Phragmites located within 6.2 miles of the water’s edge.

The results of their three-year study are reported in a special issue of the Journal of Great Lakes Research focusing on remote sensing.

The Phragmites map is the first of its kind. Lead author Laura Bourgeau-Chavez, a research scientist at MTRI in Ann Arbor, Mich., calls it “a highly accurate data set that will allow national, regional and local managers to visualize the extent of Phragmites invasion in the Great Lakes and strategically plan efforts to manage existing populations and minimize new colonization.”

Why is invasive Phragmites such a threat? The invasive form can out-compete native wetland plants for resources, quickly dominating wetlands. It displaces native vegetation and reduces the quality of the habitat, the scientists say, altering nutrients in the soil and water, decreasing the diversity of animals and plants that normally live there, increasing air temperatures, drying wetland soils and trapping sediments. Mature stands of Phragmites often reach 16-feet tall, interfering with shoreline views, which can lower property values.

Using synthetic aperture radar (SAR), the researchers were able to use the longer wavelengths of SAR (approximately 23 centimeters) to distinguish between high biomass invasive Phragmites and other types of wetland vegetation. It also helped them detect flooding under a canopy of plants. For the entire Great Lakes basin, the overall accuracy of the resulting map was 87 percent.

To validate their classification of the satellite data, similar information was collected by hand at random sites throughout the coastal wetlands of the Great Lakes during 2010 and 2011. By the end of 2011, a total of almost 1,200 half-acre field sites had been checked.

Lakes Huron and Erie turned out to have the greatest amount of invasive Phragmites. The project identified a smaller extent of Phragmites in Lake Michigan but only a few stands in Lake Ontario and almost none in Lake Superior.

Although other factors may be at play, it appears that climate is helping determine the northward range of Phragmites. Changing climate conditions, therefore, may have broad impacts on the distribution of Phragmites. With the developed dataset, scientists can effectively model future range extension and target control efforts. The methods developed in the project can also be used to re-map targeted areas in the future.

The Canadian coastlines of the Great Lakes were not included in this study due to financial constraints. In the future, the researchers hope to extend their mapping to the Canadian shores and further into the landscape than the current 6.2 miles.

The research project was funded by the US Environmental Protection Agency’s Great Lakes Restoration Initiative through a cooperative agreement with the USGS Great Lakes Science Center and USFWS.

Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Jennifer Donovan | EurekAlert!
Further information:
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>