Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Following Phragmites Home: Scientists Use Satellite Data to Map Invasive Species in Great Lakes Wetlands

18.12.2012
Phragmites australis, an invasive species of plant called common reed, grows rapidly into dense stands of tall plants that pose an extreme threat to Great Lakes coastal wetlands. Early treatment is the key to controlling Phragmites.

But how can these invasive reeds be eradicated before they take over their environment if we don’t know where they are?


Invasive wetlands Phragmites tower over 5-foot-tall Michigan Tech Research Institute intern Naomi Hamermesh (now a MTRI employee).

Now we do know, thanks to scientists from Michigan Technological University’s Michigan Tech Research Institute (MTRI), the US Geological Survey (USGS), Boston College and the US Fish and Wildlife Service (USFWS). They mapped the US coastline of all five Great Lakes using satellite technologies. Combined with field studies along those coastlines to confirm the satellite data, the map shows the locations of large stands of the invasive Phragmites located within 6.2 miles of the water’s edge.

The results of their three-year study are reported in a special issue of the Journal of Great Lakes Research focusing on remote sensing.

The Phragmites map is the first of its kind. Lead author Laura Bourgeau-Chavez, a research scientist at MTRI in Ann Arbor, Mich., calls it “a highly accurate data set that will allow national, regional and local managers to visualize the extent of Phragmites invasion in the Great Lakes and strategically plan efforts to manage existing populations and minimize new colonization.”

Why is invasive Phragmites such a threat? The invasive form can out-compete native wetland plants for resources, quickly dominating wetlands. It displaces native vegetation and reduces the quality of the habitat, the scientists say, altering nutrients in the soil and water, decreasing the diversity of animals and plants that normally live there, increasing air temperatures, drying wetland soils and trapping sediments. Mature stands of Phragmites often reach 16-feet tall, interfering with shoreline views, which can lower property values.

Using synthetic aperture radar (SAR), the researchers were able to use the longer wavelengths of SAR (approximately 23 centimeters) to distinguish between high biomass invasive Phragmites and other types of wetland vegetation. It also helped them detect flooding under a canopy of plants. For the entire Great Lakes basin, the overall accuracy of the resulting map was 87 percent.

To validate their classification of the satellite data, similar information was collected by hand at random sites throughout the coastal wetlands of the Great Lakes during 2010 and 2011. By the end of 2011, a total of almost 1,200 half-acre field sites had been checked.

Lakes Huron and Erie turned out to have the greatest amount of invasive Phragmites. The project identified a smaller extent of Phragmites in Lake Michigan but only a few stands in Lake Ontario and almost none in Lake Superior.

Although other factors may be at play, it appears that climate is helping determine the northward range of Phragmites. Changing climate conditions, therefore, may have broad impacts on the distribution of Phragmites. With the developed dataset, scientists can effectively model future range extension and target control efforts. The methods developed in the project can also be used to re-map targeted areas in the future.

The Canadian coastlines of the Great Lakes were not included in this study due to financial constraints. In the future, the researchers hope to extend their mapping to the Canadian shores and further into the landscape than the current 6.2 miles.

The research project was funded by the US Environmental Protection Agency’s Great Lakes Restoration Initiative through a cooperative agreement with the USGS Great Lakes Science Center and USFWS.

Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Jennifer Donovan | EurekAlert!
Further information:
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>