Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paper examines future of seawater desalinization

05.08.2011
A paper co-authored by William Phillip of the University of Notre Dame's Department of Chemical and Biomolecular Engineering and Menachem Elimelech, Robert Goizueta Professor of Environmental and Chemical Engineering at Yale University, appearing in this week's edition of the journal Science offers a critical review of the state of seawater desalination technology.

Elimelech and Phillip and examine how seawater desalination technology has advanced over the past 30 years, in what ways the state-of-the-art technology can be improved, and if seawater desalination is a sustainable technological solution to global water shortages.

"At present, one-third of the world's population lives in water stressed countries, Phillip said. "Increasing population, contamination of fresh water sources and climate change will cause this percentage to increase over the coming decade. Additionally, the social and ecological benefits of adequate fresh water resources are well-documented. Therefore, it is important to find a way to alleviate this stress with a sustainable solution."

The authors point out that in recent years, large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants.

In their Science paper, Elimelech and Phillip review the possible reductions in energy demand by state-of-the-art desalination technologies, the potential role of advanced materials and innovative technologies in improving the performance, and the sustainability of desalination as a technological solution to global water shortages.

The authors believe that there are important policy implications in their Science paper.

"Seawater desalination is an energy-intensive process; desalinating seawater consumes significantly more energy than treating traditional fresh water sources," Phillip said. "However, these traditional sources aren't going to be able to meet the growing demand for water worldwide. Several options already exist to augment fresh water sources — including the treatment of low-quality local water sources, water recycling and reuse and water conservation, —understanding where seawater desalination fits into this portfolio of water supply options is critical. Hopefully, our paper helps provide some of the information needed to inform the decisions of policy makers, water resource planers, scientists, and engineers on the suitability of desalination as a means to meet the increasing demands for water."

Phillip, who joined the Notre Dame faculty this year, is interested in examining how membrane structure and chemistry affect the transport of chemicals across a variety of membranes. Understanding the connection between functionality and property enables the design and fabrication of next generation membranes that provide more precise control over the transport of chemical species. These material advantages can be leveraged to design more effective and energy-efficient systems. Chemical separations at the water- energy nexus (e.g. desalination) is one area where this knowledge can be applied.

william phillip | EurekAlert!
Further information:
http://www.nd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>