Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paper examines future of seawater desalinization

05.08.2011
A paper co-authored by William Phillip of the University of Notre Dame's Department of Chemical and Biomolecular Engineering and Menachem Elimelech, Robert Goizueta Professor of Environmental and Chemical Engineering at Yale University, appearing in this week's edition of the journal Science offers a critical review of the state of seawater desalination technology.

Elimelech and Phillip and examine how seawater desalination technology has advanced over the past 30 years, in what ways the state-of-the-art technology can be improved, and if seawater desalination is a sustainable technological solution to global water shortages.

"At present, one-third of the world's population lives in water stressed countries, Phillip said. "Increasing population, contamination of fresh water sources and climate change will cause this percentage to increase over the coming decade. Additionally, the social and ecological benefits of adequate fresh water resources are well-documented. Therefore, it is important to find a way to alleviate this stress with a sustainable solution."

The authors point out that in recent years, large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants.

In their Science paper, Elimelech and Phillip review the possible reductions in energy demand by state-of-the-art desalination technologies, the potential role of advanced materials and innovative technologies in improving the performance, and the sustainability of desalination as a technological solution to global water shortages.

The authors believe that there are important policy implications in their Science paper.

"Seawater desalination is an energy-intensive process; desalinating seawater consumes significantly more energy than treating traditional fresh water sources," Phillip said. "However, these traditional sources aren't going to be able to meet the growing demand for water worldwide. Several options already exist to augment fresh water sources — including the treatment of low-quality local water sources, water recycling and reuse and water conservation, —understanding where seawater desalination fits into this portfolio of water supply options is critical. Hopefully, our paper helps provide some of the information needed to inform the decisions of policy makers, water resource planers, scientists, and engineers on the suitability of desalination as a means to meet the increasing demands for water."

Phillip, who joined the Notre Dame faculty this year, is interested in examining how membrane structure and chemistry affect the transport of chemicals across a variety of membranes. Understanding the connection between functionality and property enables the design and fabrication of next generation membranes that provide more precise control over the transport of chemical species. These material advantages can be leveraged to design more effective and energy-efficient systems. Chemical separations at the water- energy nexus (e.g. desalination) is one area where this knowledge can be applied.

william phillip | EurekAlert!
Further information:
http://www.nd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>