Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paper examines future of seawater desalinization

05.08.2011
A paper co-authored by William Phillip of the University of Notre Dame's Department of Chemical and Biomolecular Engineering and Menachem Elimelech, Robert Goizueta Professor of Environmental and Chemical Engineering at Yale University, appearing in this week's edition of the journal Science offers a critical review of the state of seawater desalination technology.

Elimelech and Phillip and examine how seawater desalination technology has advanced over the past 30 years, in what ways the state-of-the-art technology can be improved, and if seawater desalination is a sustainable technological solution to global water shortages.

"At present, one-third of the world's population lives in water stressed countries, Phillip said. "Increasing population, contamination of fresh water sources and climate change will cause this percentage to increase over the coming decade. Additionally, the social and ecological benefits of adequate fresh water resources are well-documented. Therefore, it is important to find a way to alleviate this stress with a sustainable solution."

The authors point out that in recent years, large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants.

In their Science paper, Elimelech and Phillip review the possible reductions in energy demand by state-of-the-art desalination technologies, the potential role of advanced materials and innovative technologies in improving the performance, and the sustainability of desalination as a technological solution to global water shortages.

The authors believe that there are important policy implications in their Science paper.

"Seawater desalination is an energy-intensive process; desalinating seawater consumes significantly more energy than treating traditional fresh water sources," Phillip said. "However, these traditional sources aren't going to be able to meet the growing demand for water worldwide. Several options already exist to augment fresh water sources — including the treatment of low-quality local water sources, water recycling and reuse and water conservation, —understanding where seawater desalination fits into this portfolio of water supply options is critical. Hopefully, our paper helps provide some of the information needed to inform the decisions of policy makers, water resource planers, scientists, and engineers on the suitability of desalination as a means to meet the increasing demands for water."

Phillip, who joined the Notre Dame faculty this year, is interested in examining how membrane structure and chemistry affect the transport of chemicals across a variety of membranes. Understanding the connection between functionality and property enables the design and fabrication of next generation membranes that provide more precise control over the transport of chemical species. These material advantages can be leveraged to design more effective and energy-efficient systems. Chemical separations at the water- energy nexus (e.g. desalination) is one area where this knowledge can be applied.

william phillip | EurekAlert!
Further information:
http://www.nd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>