Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Co-operating Underwater Robots Rapidly Identify and Communicate Potential Threats in Murky Waters

01.07.2009
Scientists are developing novel underwater laser networking and imaging to provide significant advantages over existing technologies to rapidly identify and communicate potential threats in murky coastal waters. When fully developed, the technology will be used onboard a group of small, co-operating underwater robots and will have extensive utility for future U.S. military operations including U.S. war fighters. Domestically, it will be used for Maritime security and environmental assessment to address some of the most critical areas in need of ocean research and technology development.

Novel underwater laser networking and imaging technologies being developed by scientists at the Ocean Visibility and Optics Laboratory at Harbor Branch Oceanographic Institute at Florida Atlantic University may provide significant advantages over existing technologies in rapidly identifying and communicating potential threats in murky coastal waters.

Harbor Branch has received $2 million from the U.S. Department of Defense, Office of Naval Research, to continue its cutting-edge research and development in the area of underwater laser sensing and robotics in an effort to develop next generation underwater sensing networks to enhance the security of coastal waters and ports, and to expand ecosystem monitoring capabilities.

This project will build on current technologies and capabilities in laser imaging developed at Harbor Branch. When the technology is fully developed, it will be used onboard a group of small, co-operating underwater robots and will have extensive utility for future U.S. military operations including U.S. war fighters (intelligence, surveillance and reconnaissance, and mine countermeasures operations).

Domestically, it will be used for Maritime security and environmental assessment to address some of the most critical areas in need of ocean research and technology development over the next ten years.

The project is being developed in three phases, with the overall goal of investigating concepts in concurrent laser imaging and communications where dual-purpose imaging and communications system components are distributed within the co-operating group of underwater robots.

Scientists at Harbor Branch will use advanced computer simulation software to predict the underwater laser light field in variable environmental conditions. Combined with measurements from their state-of-the-art underwater laser test facility which will be used as a proving ground for the techniques, the objective is to gain a thorough understanding of how such techniques can contribute to underwater imaging missions of the future.

According to Dr. Fraser Dalgleish, principal investigator and assistant research professor at Harbor Branch, images of suspicious underwater objects need to be rapidly transmitted to a command center or to those who may be in danger. “Underwater mines pose a major threat to U.S. Navy, Coast Guard and merchant fleets,” said Dalgleish. “Using intelligent, adaptive laser imaging and communication techniques with swarms of co-operating underwater robots could provide identification-quality underwater imagery in real-time across much greater regions of seabed than current technology allows, and will therefore be vital for effectively classifying both military and environmental threats to our coastal regions in the future.”

Harbor Branch Oceanographic Institute at Florida Atlantic University is a research institute dedicated to exploration, innovation, conservation, and education related to the oceans. Harbor Branch was founded in 1971 as a private non-profit organization. In December 2007, Harbor Branch joined Florida Atlantic University. The institute specializes in ocean engineering, at-sea operations, drug discovery and biotechnology from the oceans, coastal ecology and conservation, marine mammal research and conservation, aquaculture, and marine education. For more information, visit www.hboi.fau.edu.

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>