Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Co-operating Underwater Robots Rapidly Identify and Communicate Potential Threats in Murky Waters

01.07.2009
Scientists are developing novel underwater laser networking and imaging to provide significant advantages over existing technologies to rapidly identify and communicate potential threats in murky coastal waters. When fully developed, the technology will be used onboard a group of small, co-operating underwater robots and will have extensive utility for future U.S. military operations including U.S. war fighters. Domestically, it will be used for Maritime security and environmental assessment to address some of the most critical areas in need of ocean research and technology development.

Novel underwater laser networking and imaging technologies being developed by scientists at the Ocean Visibility and Optics Laboratory at Harbor Branch Oceanographic Institute at Florida Atlantic University may provide significant advantages over existing technologies in rapidly identifying and communicating potential threats in murky coastal waters.

Harbor Branch has received $2 million from the U.S. Department of Defense, Office of Naval Research, to continue its cutting-edge research and development in the area of underwater laser sensing and robotics in an effort to develop next generation underwater sensing networks to enhance the security of coastal waters and ports, and to expand ecosystem monitoring capabilities.

This project will build on current technologies and capabilities in laser imaging developed at Harbor Branch. When the technology is fully developed, it will be used onboard a group of small, co-operating underwater robots and will have extensive utility for future U.S. military operations including U.S. war fighters (intelligence, surveillance and reconnaissance, and mine countermeasures operations).

Domestically, it will be used for Maritime security and environmental assessment to address some of the most critical areas in need of ocean research and technology development over the next ten years.

The project is being developed in three phases, with the overall goal of investigating concepts in concurrent laser imaging and communications where dual-purpose imaging and communications system components are distributed within the co-operating group of underwater robots.

Scientists at Harbor Branch will use advanced computer simulation software to predict the underwater laser light field in variable environmental conditions. Combined with measurements from their state-of-the-art underwater laser test facility which will be used as a proving ground for the techniques, the objective is to gain a thorough understanding of how such techniques can contribute to underwater imaging missions of the future.

According to Dr. Fraser Dalgleish, principal investigator and assistant research professor at Harbor Branch, images of suspicious underwater objects need to be rapidly transmitted to a command center or to those who may be in danger. “Underwater mines pose a major threat to U.S. Navy, Coast Guard and merchant fleets,” said Dalgleish. “Using intelligent, adaptive laser imaging and communication techniques with swarms of co-operating underwater robots could provide identification-quality underwater imagery in real-time across much greater regions of seabed than current technology allows, and will therefore be vital for effectively classifying both military and environmental threats to our coastal regions in the future.”

Harbor Branch Oceanographic Institute at Florida Atlantic University is a research institute dedicated to exploration, innovation, conservation, and education related to the oceans. Harbor Branch was founded in 1971 as a private non-profit organization. In December 2007, Harbor Branch joined Florida Atlantic University. The institute specializes in ocean engineering, at-sea operations, drug discovery and biotechnology from the oceans, coastal ecology and conservation, marine mammal research and conservation, aquaculture, and marine education. For more information, visit www.hboi.fau.edu.

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>