Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model helps explain how human-provided food resources promote or reduce wildlife disease

23.07.2014

Scientists have long known that providing supplemental food for wildlife, or resource provisioning, can sometimes cause more harm than good. University of Georgia ecologists have developed a new mathematical model to tease apart the processes that help explain why. Their research, which has implications for public health and wildlife conservation, appears in the Royal Society journal Biology Letters.

Wildlife of many kinds are increasingly finding their meals in human environments, gathering at places like backyard bird feeders, landfills or farms that offer an easily accessible year-round source of food. As with people, however, when large numbers of animals congregate they can face a higher risk of contracting disease.


A new study by UGA Odum School of Ecology researchers on providing supplemental food for wildlife, such as a feral cat feeding station, can promote or reduce disease. (Scott Granneman via Wikimedia Commons)

A number of studies have found large disease outbreaks following the introduction of supplemental food resources, as in the case of Hendra virus in flying foxes in Australia. Others have shown just the opposite, with disease transmission slowed or eliminated, as with gut parasites in macaques in Bali.

A desire to understand this puzzling disparity in disease outcomes motivated the study by Daniel Becker, a doctoral student in the Odum School of Ecology, and co-author Richard Hall, assistant research scientist in the Odum School and the College of Veterinary Medicine department of infectious diseases.

... more about:
»Ecology »animals »diseases »pathogens »species

"This activity is important for wildlife conservation and human health," said Becker. "There are more and more examples of provisioning affecting disease risk. By creating resource hot spots, we're essentially providing opportunities to bring together wildlife, domestic animals and humans, offering chances for pathogens to spread between species."

Providing food for wildlife-whether intentionally, as with bird feeders or feeding stations for feral cat colonies, or unintentionally as in the case of garbage dumps-can cause changes to an animal's breeding success, foraging behavior and body condition that in turn influence its risk of acquiring harmful infections.

A steady, easy-to-access source of nutrition can increase the size of a wildlife population by improving reproductive success and increasing animals' life spans. A larger pool of uninfected-and therefore susceptible-animals can fuel disease outbreaks and increase the chance that the population remains infected over longer timescales.

Furthermore, gathering around feeding stations leads to more contacts between animals, increasing the chances that sick individuals will pass on their infection to others.

Easy access to food also improves body condition, allowing animals to mount more effective immune defenses. This can reduce infection levels in wildlife by allowing animals to successfully fight off pathogens before they become infectious. Conversely, if improvements to immune defense cause sick animals to live longer, they may pass on infection to more individuals throughout their lifetime.

"You've got these opposing processes, with factors such as aggregation and larger population sizes potentially aiding disease spread, and improved ability of animals to resist infection making it harder for the disease to spread," said Hall.

"Figuring out how these all work together to influence population-level disease outcomes isn't really straightforward," added Becker. "It helps having a formal model to look at how these processes together all play out."

For their model, Becker and Hall used data from studies of feral cats with feline leukemia virus that visited supplemental feeding stations. They looked at how birth rate, death rate, contact rate and the strength and speed of immune system response were influenced by the amount of supplemental food the animals were able to access.

The model revealed that a key factor in predicting disease outbreaks in wildlife that access supplemental food was how that additional food influenced the strength and speed of the immune response. And more food wasn't necessarily better. Under some scenarios, even low levels of supplemental food could increase the risk of outbreaks compared with wild-feeding populations. In other cases, a small amount of supplemental food initially drove down infection levels, but too much led to the population size growing so large that the increased opportunities for infection to spread overcame the animals' immune defenses, with large outbreaks possible.

The authors said that their results point to the urgent need for more field and laboratory studies to explore the relationship between resource provisioning, immune defense and disease.

"As the planet becomes more urbanized, wildlife are increasingly coming into cities to use these resources, and then they can come into contact with domestic animals and humans, with potentially the risk of infections spilling over across species," Hall said. "For people who put out food for birds, wildlife or free-roaming feral cats, it's important to understand that supplemental feeding can have these unintended consequences of enhancing disease transmission."

He advised that if people notice sick animals at their feeding stations, the best course of action is to remove the food source to allow the uninfected animals to disperse, and to clean feeders regularly and thoroughly.

Providing supplementary food is also a frequent management action as part of recovery plans for rare and threatened wildlife, but Becker and Hall urged caution before applying this strategy in species vulnerable to diseases causing high mortality, such as rabies.

"We really need to do more research to figure out how immune response depends on supplementation," Hall added. "The modeling study illuminates where we should be focusing experimental efforts."

The full research article is available at http://rsbl.royalsocietypublishing.org/lookup/doi/10.1098/rsbl.2014.0309. A UGA Graduate Research Assistantship and a National Science Foundation Graduate Research Fellowship supported this study.

UGA Odum School of Ecology
The UGA Odum School of Ecology, the world's first stand-alone school dedicated to ecology, is creating the future of ecological discovery through innovative research about the rapidly changing planet, educating the next generation of ecologists and applying knowledge in service to the broader public. For more information, see www.ecology.uga.edu.

Daniel Becker | Eurek Alert!
Further information:
http://news.uga.edu/releases/article/model-wildlife-disease/

Further reports about: Ecology animals diseases pathogens species

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>