Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New model helps explain how human-provided food resources promote or reduce wildlife disease


Scientists have long known that providing supplemental food for wildlife, or resource provisioning, can sometimes cause more harm than good. University of Georgia ecologists have developed a new mathematical model to tease apart the processes that help explain why. Their research, which has implications for public health and wildlife conservation, appears in the Royal Society journal Biology Letters.

Wildlife of many kinds are increasingly finding their meals in human environments, gathering at places like backyard bird feeders, landfills or farms that offer an easily accessible year-round source of food. As with people, however, when large numbers of animals congregate they can face a higher risk of contracting disease.

A new study by UGA Odum School of Ecology researchers on providing supplemental food for wildlife, such as a feral cat feeding station, can promote or reduce disease. (Scott Granneman via Wikimedia Commons)

A number of studies have found large disease outbreaks following the introduction of supplemental food resources, as in the case of Hendra virus in flying foxes in Australia. Others have shown just the opposite, with disease transmission slowed or eliminated, as with gut parasites in macaques in Bali.

A desire to understand this puzzling disparity in disease outcomes motivated the study by Daniel Becker, a doctoral student in the Odum School of Ecology, and co-author Richard Hall, assistant research scientist in the Odum School and the College of Veterinary Medicine department of infectious diseases.

... more about:
»Ecology »animals »diseases »pathogens »species

"This activity is important for wildlife conservation and human health," said Becker. "There are more and more examples of provisioning affecting disease risk. By creating resource hot spots, we're essentially providing opportunities to bring together wildlife, domestic animals and humans, offering chances for pathogens to spread between species."

Providing food for wildlife-whether intentionally, as with bird feeders or feeding stations for feral cat colonies, or unintentionally as in the case of garbage dumps-can cause changes to an animal's breeding success, foraging behavior and body condition that in turn influence its risk of acquiring harmful infections.

A steady, easy-to-access source of nutrition can increase the size of a wildlife population by improving reproductive success and increasing animals' life spans. A larger pool of uninfected-and therefore susceptible-animals can fuel disease outbreaks and increase the chance that the population remains infected over longer timescales.

Furthermore, gathering around feeding stations leads to more contacts between animals, increasing the chances that sick individuals will pass on their infection to others.

Easy access to food also improves body condition, allowing animals to mount more effective immune defenses. This can reduce infection levels in wildlife by allowing animals to successfully fight off pathogens before they become infectious. Conversely, if improvements to immune defense cause sick animals to live longer, they may pass on infection to more individuals throughout their lifetime.

"You've got these opposing processes, with factors such as aggregation and larger population sizes potentially aiding disease spread, and improved ability of animals to resist infection making it harder for the disease to spread," said Hall.

"Figuring out how these all work together to influence population-level disease outcomes isn't really straightforward," added Becker. "It helps having a formal model to look at how these processes together all play out."

For their model, Becker and Hall used data from studies of feral cats with feline leukemia virus that visited supplemental feeding stations. They looked at how birth rate, death rate, contact rate and the strength and speed of immune system response were influenced by the amount of supplemental food the animals were able to access.

The model revealed that a key factor in predicting disease outbreaks in wildlife that access supplemental food was how that additional food influenced the strength and speed of the immune response. And more food wasn't necessarily better. Under some scenarios, even low levels of supplemental food could increase the risk of outbreaks compared with wild-feeding populations. In other cases, a small amount of supplemental food initially drove down infection levels, but too much led to the population size growing so large that the increased opportunities for infection to spread overcame the animals' immune defenses, with large outbreaks possible.

The authors said that their results point to the urgent need for more field and laboratory studies to explore the relationship between resource provisioning, immune defense and disease.

"As the planet becomes more urbanized, wildlife are increasingly coming into cities to use these resources, and then they can come into contact with domestic animals and humans, with potentially the risk of infections spilling over across species," Hall said. "For people who put out food for birds, wildlife or free-roaming feral cats, it's important to understand that supplemental feeding can have these unintended consequences of enhancing disease transmission."

He advised that if people notice sick animals at their feeding stations, the best course of action is to remove the food source to allow the uninfected animals to disperse, and to clean feeders regularly and thoroughly.

Providing supplementary food is also a frequent management action as part of recovery plans for rare and threatened wildlife, but Becker and Hall urged caution before applying this strategy in species vulnerable to diseases causing high mortality, such as rabies.

"We really need to do more research to figure out how immune response depends on supplementation," Hall added. "The modeling study illuminates where we should be focusing experimental efforts."

The full research article is available at A UGA Graduate Research Assistantship and a National Science Foundation Graduate Research Fellowship supported this study.

UGA Odum School of Ecology
The UGA Odum School of Ecology, the world's first stand-alone school dedicated to ecology, is creating the future of ecological discovery through innovative research about the rapidly changing planet, educating the next generation of ecologists and applying knowledge in service to the broader public. For more information, see

Daniel Becker | Eurek Alert!
Further information:

Further reports about: Ecology animals diseases pathogens species

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>