Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model helps explain how human-provided food resources promote or reduce wildlife disease

23.07.2014

Scientists have long known that providing supplemental food for wildlife, or resource provisioning, can sometimes cause more harm than good. University of Georgia ecologists have developed a new mathematical model to tease apart the processes that help explain why. Their research, which has implications for public health and wildlife conservation, appears in the Royal Society journal Biology Letters.

Wildlife of many kinds are increasingly finding their meals in human environments, gathering at places like backyard bird feeders, landfills or farms that offer an easily accessible year-round source of food. As with people, however, when large numbers of animals congregate they can face a higher risk of contracting disease.


A new study by UGA Odum School of Ecology researchers on providing supplemental food for wildlife, such as a feral cat feeding station, can promote or reduce disease. (Scott Granneman via Wikimedia Commons)

A number of studies have found large disease outbreaks following the introduction of supplemental food resources, as in the case of Hendra virus in flying foxes in Australia. Others have shown just the opposite, with disease transmission slowed or eliminated, as with gut parasites in macaques in Bali.

A desire to understand this puzzling disparity in disease outcomes motivated the study by Daniel Becker, a doctoral student in the Odum School of Ecology, and co-author Richard Hall, assistant research scientist in the Odum School and the College of Veterinary Medicine department of infectious diseases.

... more about:
»Ecology »animals »diseases »pathogens »species

"This activity is important for wildlife conservation and human health," said Becker. "There are more and more examples of provisioning affecting disease risk. By creating resource hot spots, we're essentially providing opportunities to bring together wildlife, domestic animals and humans, offering chances for pathogens to spread between species."

Providing food for wildlife-whether intentionally, as with bird feeders or feeding stations for feral cat colonies, or unintentionally as in the case of garbage dumps-can cause changes to an animal's breeding success, foraging behavior and body condition that in turn influence its risk of acquiring harmful infections.

A steady, easy-to-access source of nutrition can increase the size of a wildlife population by improving reproductive success and increasing animals' life spans. A larger pool of uninfected-and therefore susceptible-animals can fuel disease outbreaks and increase the chance that the population remains infected over longer timescales.

Furthermore, gathering around feeding stations leads to more contacts between animals, increasing the chances that sick individuals will pass on their infection to others.

Easy access to food also improves body condition, allowing animals to mount more effective immune defenses. This can reduce infection levels in wildlife by allowing animals to successfully fight off pathogens before they become infectious. Conversely, if improvements to immune defense cause sick animals to live longer, they may pass on infection to more individuals throughout their lifetime.

"You've got these opposing processes, with factors such as aggregation and larger population sizes potentially aiding disease spread, and improved ability of animals to resist infection making it harder for the disease to spread," said Hall.

"Figuring out how these all work together to influence population-level disease outcomes isn't really straightforward," added Becker. "It helps having a formal model to look at how these processes together all play out."

For their model, Becker and Hall used data from studies of feral cats with feline leukemia virus that visited supplemental feeding stations. They looked at how birth rate, death rate, contact rate and the strength and speed of immune system response were influenced by the amount of supplemental food the animals were able to access.

The model revealed that a key factor in predicting disease outbreaks in wildlife that access supplemental food was how that additional food influenced the strength and speed of the immune response. And more food wasn't necessarily better. Under some scenarios, even low levels of supplemental food could increase the risk of outbreaks compared with wild-feeding populations. In other cases, a small amount of supplemental food initially drove down infection levels, but too much led to the population size growing so large that the increased opportunities for infection to spread overcame the animals' immune defenses, with large outbreaks possible.

The authors said that their results point to the urgent need for more field and laboratory studies to explore the relationship between resource provisioning, immune defense and disease.

"As the planet becomes more urbanized, wildlife are increasingly coming into cities to use these resources, and then they can come into contact with domestic animals and humans, with potentially the risk of infections spilling over across species," Hall said. "For people who put out food for birds, wildlife or free-roaming feral cats, it's important to understand that supplemental feeding can have these unintended consequences of enhancing disease transmission."

He advised that if people notice sick animals at their feeding stations, the best course of action is to remove the food source to allow the uninfected animals to disperse, and to clean feeders regularly and thoroughly.

Providing supplementary food is also a frequent management action as part of recovery plans for rare and threatened wildlife, but Becker and Hall urged caution before applying this strategy in species vulnerable to diseases causing high mortality, such as rabies.

"We really need to do more research to figure out how immune response depends on supplementation," Hall added. "The modeling study illuminates where we should be focusing experimental efforts."

The full research article is available at http://rsbl.royalsocietypublishing.org/lookup/doi/10.1098/rsbl.2014.0309. A UGA Graduate Research Assistantship and a National Science Foundation Graduate Research Fellowship supported this study.

UGA Odum School of Ecology
The UGA Odum School of Ecology, the world's first stand-alone school dedicated to ecology, is creating the future of ecological discovery through innovative research about the rapidly changing planet, educating the next generation of ecologists and applying knowledge in service to the broader public. For more information, see www.ecology.uga.edu.

Daniel Becker | Eurek Alert!
Further information:
http://news.uga.edu/releases/article/model-wildlife-disease/

Further reports about: Ecology animals diseases pathogens species

More articles from Ecology, The Environment and Conservation:

nachricht Treating ships’ ballast water: filtration preferable to disinfection
30.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Are Fish Getting High on Cocaine?
28.07.2015 | McGill University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>