Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile Oceanographic Data Collection and Animal Tracking Platform Launched

26.06.2012
A Wave Glider unmanned maritime vehicle (UMV) has been deployed by Ocean Tracking Network (OTN) researchers in the Gulf of St. Lawrence to test mobile collection and remote offloading of marine animal tracking information.

Deployed from Stephenville, N.L., Canada on June 19, the Wave Glider will travel in the area of the Strait of Belle Isle and the Cabot Strait over a 30-day period before reaching its final waypoint at the northern tip of Cape Breton Island.

The Wave Glider, built by U.S. based Liquid Robotics, harvests energy from wave motion and solar panels to generate thrust at the ocean's surface. Piloted by the Liquid Robotics team, the Glider carries a VEMCO acoustic receiver to collect detections of tagged fish within 800m. Of particular interest on this trip are detections of Atlantic salmon tagged by the Atlantic Salmon Federation.

Mobile receivers greatly expand the range of animal detections contributing to more comprehensive records of animal movement, migration and survival. In the future, Gliders will be able to upload data from fixed receiver stations eliminating the need to hire costly ships for data retrieval by OTN researchers. This mission is testing the ability of a mobile receiver and will not collect data from bottom moored receivers.

“These things have excellent station keep capabilities. You can take a Wave Glider and literally park it over a [receiver]. On this mission it’ll be moving all the time, but if we want to use it in the future to upload receivers, you would just tell it, ‘go here,’ and it would stay there for however long it takes to upload the data. If there’s a problem and it takes two or three days to upload the data, the glider doesn’t care. The whole time it’s uploading [data], it can be sending it to you via satellite. When it’s done with that one, it just moves on to the next one.” – Richard Davis, Technical Director for the Dalhousie Glider Group

Researchers are also collecting ocean surface parameters as a context for animal movement and migration.

“The scientific community has little oceanographic data available in general for the location of the mission at this time of year for use in developing models of the oceanography and currents in the Gulf. The models are important for weather prediction, search and rescue activities, understanding the drivers of the ecosystem, and for environmental responses to events like oil spills.” – Dr. Fred Whoriskey, Executive Director of OTN

OTN is a $168-million research and technology development project headquartered at Dalhousie University. Starting in 2008, OTN began deploying Canadian state of the art acoustic receivers and oceanographic monitoring equipment in key ocean locations. These are being used to document the movements and survival of marine animals carrying acoustic tags and to document how both are influenced by oceanographic conditions. OTN is funded by the Canada Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada.

Nikki Beauchamp
Public Relations, Ocean Tracking Network
Dalhousie University
1355 Oxford Street
PO Box 15000
Halifax, Nova Scotia
B3H 4R2 Canada
Phone: 902.293.0181
FAX: 902.494.3736
email: n.beauchamp@dal.ca
http://oceantrackingnetwork.org/
http://canada.oceantrack.org/

Nikki Beauchamp | Newswise Science News
Further information:
http://www.dal.ca
http://oceantrackingnetwork.org/
http://canada.oceantrack.org/

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>