Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes turn electricity directly to methane without hydrogen generation

01.04.2009
A tiny microbe can take electricity and directly convert carbon dioxide and water to methane, producing a portable energy source with a potentially neutral carbon footprint, according to a team of Penn State engineers.

"We were studying making hydrogen in microbial electrolysis cells and we kept getting all this methane," said Bruce E. Logan, Kappe Professor of Environmental Engineering, Penn State. "We may now understand why."

Methanogenic microorganisms do produce methane in marshes and dumps, but scientists thought that the organisms turned hydrogen or organic materials, such as acetate, into methane. However, the researchers found, while trying to produce hydrogen in microbial electrolysis cells, that their cells produced much more methane than expected.

"All the methane generation going on in nature that we have assumed is going through hydrogen may not be," said Logan. "We actually find very little hydrogen in the gas phase in nature. Perhaps where we assumed hydrogen is being made, it is not."

Microbial electrolysis cells do require an electrical voltage to be added to the voltage that is produced by bacteria using organic materials to produce current that evolves into hydrogen. The researchers found that the Archaea, using about the same electrical input, could use the current to convert carbon dioxide and water to methane without any organic material, bacteria or hydrogen usually found in microbial electrolysis cells. They report their findings in this week's issue of Environmental Science and Technology.

"We have a microbe that is self perpetuating that can accept electrons directly, and use them to create methane," said Logan.

Logan, working with Shaoan Cheng, senior research associate; Defeng Xing, post doctoral researcher, and Douglas F. Call, graduate student, environmental engineering, confirmed that the microscopic organisms produced the methane. The researchers created a two-chambered cell with an anode immersed in water on one side of the chamber and a cathode in water, inorganic nutrients and carbon dioxide on the other side of the chamber. They applied a voltage, but recorded only a minute current. The researchers then coated the cathode with the biofilm of Archaea and not only did current flow in the circuit, but the cell produced methane.

"The only way to get current at the voltage we used was if the microbes were directly accepting electrons," said Logan. He notes that the electrochemical reaction takes place without any precious metal catalysts and at a lower energy level than converting carbon dioxide to methane using conventional, non-biological methods.

The cells are about 80 percent efficient in converting electricity to methane and because they use carbon dioxide as feed stock, would be carbon neutral if the electricity comes from a non-carbon source such as solar or wind power.

"The process does not sequester carbon, but it does turn carbon dioxide into fuel," said Logan. "If the methane is burned and carbon dioxide captured, then the process can be carbon neutral."

Logan suggests the method for off peak capture of renewable energy in a portable fuel. Methane is preferred over hydrogen because a large portion of the U.S. infrastructure is already set up to easily transport and deliver methane.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>