Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method monitors critical bacteria in wastewater treatment

06.02.2009
Researchers have developed a new technique using sensors to constantly monitor the health of bacteria critical to wastewater treatment facilities and have verified a theory that copper is vital to the proper functioning of a key enzyme in the bacteria.

The new method senses minute changes in chemistry related to bacterial health and yields results immediately, unlike conventional technologies, which require laboratory analyses taking at least a day. This immediacy could make it possible to detect when bacteria are about to stop processing waste and correct the problem before toxins are released into waterways, said Eric McLamore, a postdoctoral research associate in civil engineering.

The technique also is a departure from conventional methods because established techniques require that bacterial "biofilms" be damaged or destroyed in order to be tested.

"It's important to monitor intact living specimens to obtain accurate data, and our approach is both non-invasive and a real-time technique," said Marshall Porterfield, an associate professor of agricultural and biological engineering.

Findings will be detailed in the Feb. 15 issue of the journal Biotechnology and Bioengineering. McLamore, Porterfield and M. Katherine Banks, head of the School of Civil Engineering and a professor of civil engineering, wrote the paper, which is being highlighted in the journal's "spotlight" section.

The biofilms are a matrix of wastewater-treatment organisms that coat natural or synthetic surfaces. A healthy population of the bacteria must be maintained for wastewater treatment facilities to operate properly, McLamore said.

The researchers used the method to study a type of bacterium called Nitrosomonas europaea. The microorganisms are referred to as nitrifying bacteria because they convert toxic ammonia from human wastes and fertilizer runoff into compounds called nitrites, which are further broken down by other bacteria into harmless nitrogen gas.

Sensor data reveal how well the bacteria are absorbing ions, or electrically charged atoms and molecules, from the wastes. The "filtering flux sensor" measures ammonia and nitrite to reveal the ion flux, or how many ions are being transported into and out of the biofilm per minute.

“When bacterial biofilms are poisoned, sick and stressed they start to release ions, including potassium and calcium, which is an early warning signal," Porterfield said. "The bacteria in wastewater treatment facilities often detach from surfaces, causing not only the loss of bacteria that are the foundation of the wastewater treatment system but also the uncontrolled flushing of untreated wastes into waterways.

"So if you can catch those signals, if you can detect those ions being released in real time you can develop a remediation strategy to note that they are stressed and try to get them back."

The sensor probe moves robotically back and forth every three seconds, enabling the device to capture data in two locations.

The method is called self-referencing because it compares the difference between measurements taken in two positions with the same sensor. Using a single sensor to constantly take measurements in two locations is critical for revealing rapid changes in concentration. Since individual sensors have slightly differing performance, comparing data from two different sensors does not yield precise results.

"This type of sensor isn't new, but the technique for using it is," McLamore said. "Sensors have never been used this way to measure biofilm ammonia and nitrite flux. Self referencing has been used in other applications but never in environmental studies."

The same method also could be used to monitor other bacteria and different ions.

"We can use this self-referencing method on many compounds that exist in liquids," McLamore said. "We are using this technique to monitor other ions produced by Nitrosomonas europaea and also by other species of bacteria. Real environments contain mixed cultures of all sorts of different bacteria species, and we want to use our method to monitor these."

A specific enzyme in Nitrosomonas europaea converts the ammonia to nitrite. The researchers used their new technique to verify a theory proposed decades ago that copper at the enzyme's "active site" where ammonia binds is critical to enabling the conversion.

The researchers tested the theory by using chemicals to repeatedly alter the copper to another form and then change it back to its normal state, effectively turning the bacteria on and off.

"There has been mostly speculation in the literature that copper was even at the site," Porterfield said. "So, by doing an experiment where we can turn biochemical switches on and off in the bacteria we have validated the fact that copper is indeed at the active site, while at the same time demonstrating the power of this monitoring technique."

The copper findings could lead to ways of enhancing wastewater treatment by adding or reducing copper concentration in response to changing conditions.

"There are probably also numerous applications for this technique besides wastewater treatment," McLamore said.

The research was conducted at the Bindley Bioscience Center in Purdue's Discovery Park. The system is being tested on bacteria grown in laboratory "bioreactors."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Marshall Porterfield, (765) 494-1190, porterf@purdue.edu
Eric McLamore, emclamor@purdue.edu
M. Katherine Banks, (765) 494-2256, kbanks@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>