Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical model may result in better environment measures for the Baltic

25.10.2010
Eutrophication of the Baltic Sea has clear negative effects, such as dead bottoms and massive blooms of cyanobacteria. But high plankton production can also have positive effects on acidification. Researchers at the University of Gothenburg, Sweden, have shown that it is possible to work out the aggregate effects of various environmental measures.

“The environmental state of the Baltic Sea is affected by many different processes at the same time and on several different time scales. Mathematical models are the only tools that can determine the relative significance of such processes.

I have helped develop a mathematical model for the marine systems of the Baltic Sea. Modelling tools of this type can and should make a contribution as a basis for decisions on environmental measures in the area,” says Erik Gustafsson at the Department of Earth Sciences of the University of Gothenburg.

Since 1960 an average of 50 000 square kilometres of the deep water of the Baltic Sea has been characterised by a condition in which the level of oxygen is so low that higher life forms either abandon the area or suffocate. The area of oxygen-poor regions can vary significantly from year to year, but more than 100 years of measurements show that significantly better conditions prevailed overall in the deep water during the first half of the last century.

Oxygen conditions are governed both by natural processes and by human impact. Because of strong salinity stratification and limited water exchange through the narrow Danish straits, a large part of the deep water of the Baltic Sea is isolated for periods of time. At the same time, oxygen is consumed due to the decomposition of organic matter. As a result of human activities, the quantity of organic matter increased sharply during the second half of the 20th century.

“The overarching question in my thesis concerns the extent to which the deterioration in the environmental state of the Baltic Sea can be linked to changes in climate and to what extent the increased input of nutrients has influenced the situation.”

Model results show that natural variations in climate are of great significance for the oxygen status of the deep water of the Baltic Sea over a time scale of decades. On the other hand, no clear effect can be observed over longer time scales. The marked deterioration in oxygen conditions in the deep water during the 20th century is instead largely due to our inputs of nutrients to the sea.

In addition to the physical, chemical and biological processes which are crucial among other things for the plankton dynamics of the area, Gustafsson has included the marine carbon system in his model.

“This means that it is now possible to calculate long-term variations in acidity in the sea. My model thus makes it possible to compare future positive effects of reduced nutrient inputs to the damping effect of eutrophication on acidification. This is an important issue, as the level of carbon dioxide in the atmosphere is expected to increase during the 21st century, and a sharply lowered pH may be of crucial significance to the ecosystem,” says Gustafsson.

For more information, please contact: 
Erik Gustafsson
Tel.: +46 (0)31 - 786 2877
E-mail: 
erikg@gvc.gu.se

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/22777

Further reports about: Baltic Sea Gothenburg biological process deep water sea snails

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>