Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Material Could Make Gases More Transportable

20.11.2008
Chemists at the University of Liverpool have developed a way of converting methane gas into a powder form in order to make it more transportable.

Scientists have developed a material made out of a mixture of silica and water which can soak up large quantities of methane molecules. The material looks and acts like a fine white powder which, if developed for industrial use, might be easily transported or used as a vehicle fuel.

Methane is the principal component of natural gas and can be burnt in oxygen to produce carbon dioxide and water. The abundance of the gas and its relatively clean burning process makes it a good source of fuel, but due to its gaseous state at room temperature, methane is difficult to transport from its source.

Professor Andy Cooper, Director of the Centre for Materials Discovery at the University’s Department of Chemistry, explains: “Many natural gas reserves are geographically remote and can only be extracted via pipelines, so there is a need to look for other ways to transport the gas. It has been suggested that methane gas hydrate could be used as a way of containing methane gas for transportation. The disadvantage of methane gas hydrate for industry use is that it is formed at a very slow rate when methane reacts with water under pressure.

“To counteract these difficulties we used a method to break water up into tiny droplets to increase the surface area in contact with the gas. We did this by mixing water with a special form of silica – a similar material to sand – which stops the water droplets from coalescing. This ‘dry water’ powder soaks up large quantities of methane quite rapidly at around water’s normal freezing point.”

The team also found that ‘dry water’ could be more economical than other potential products because it is made from cheap raw materials. The material may also have industrial applications if methane could be stored more conveniently and used to power clean vehicles.

Chemists at Liverpool are now investigating ways to store larger quantities of methane gas at higher temperatures and lower pressures as part of a project funded by the UK Engineering and Physical Sciences Research Council (EPSRC).

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>