Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Material Could Make Gases More Transportable

20.11.2008
Chemists at the University of Liverpool have developed a way of converting methane gas into a powder form in order to make it more transportable.

Scientists have developed a material made out of a mixture of silica and water which can soak up large quantities of methane molecules. The material looks and acts like a fine white powder which, if developed for industrial use, might be easily transported or used as a vehicle fuel.

Methane is the principal component of natural gas and can be burnt in oxygen to produce carbon dioxide and water. The abundance of the gas and its relatively clean burning process makes it a good source of fuel, but due to its gaseous state at room temperature, methane is difficult to transport from its source.

Professor Andy Cooper, Director of the Centre for Materials Discovery at the University’s Department of Chemistry, explains: “Many natural gas reserves are geographically remote and can only be extracted via pipelines, so there is a need to look for other ways to transport the gas. It has been suggested that methane gas hydrate could be used as a way of containing methane gas for transportation. The disadvantage of methane gas hydrate for industry use is that it is formed at a very slow rate when methane reacts with water under pressure.

“To counteract these difficulties we used a method to break water up into tiny droplets to increase the surface area in contact with the gas. We did this by mixing water with a special form of silica – a similar material to sand – which stops the water droplets from coalescing. This ‘dry water’ powder soaks up large quantities of methane quite rapidly at around water’s normal freezing point.”

The team also found that ‘dry water’ could be more economical than other potential products because it is made from cheap raw materials. The material may also have industrial applications if methane could be stored more conveniently and used to power clean vehicles.

Chemists at Liverpool are now investigating ways to store larger quantities of methane gas at higher temperatures and lower pressures as part of a project funded by the UK Engineering and Physical Sciences Research Council (EPSRC).

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>