Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Links in the chain: Global carbon emissions and consumption

18.10.2011
It is difficult to measure accurately each nation's contribution of carbon dioxide to the Earth's atmosphere.

Carbon is extracted out of the ground as coal, gas, and oil, and these fuels are often exported to other countries where they are burned to generate the energy that is used to make products. In turn, these products may be traded to still other countries where they are consumed.

A team led by Carnegie's Steven Davis, and including Ken Caldeira, tracked and quantified this supply chain of global carbon dioxide emissions. Their work will be published online by Proceedings of the National Academy of Sciences during the week of October 17.

Traditionally, the carbon dioxide emitted by burning fossil fuels is attributed to the country where the fuels were burned. But until now, there has not yet been a full accounting of emissions taking into consideration the entire supply chain, from where fuels originate all the way to where products made using the fuels are ultimately consumed.

"Policies seeking to regulate emissions will affect not only the parties burning fuels but also those who extract fuels and consume products. No emissions exist in isolation, and everyone along the supply chain benefits from carbon-based fuels," Davis said.

He and Caldeira, along with Glen Peters from the Center for International Climate and Environmental Research in Oslo, Norway, based their analysis on fossil energy resources of coal, oil, natural gas, and secondary fuels traded among 58 industrial sectors and 112 countries in 2004.

They found that fossil resources are highly concentrated and that the majority of fuel that is exported winds up in developed countries. Most of the countries that import a lot of fossil fuels also tend to import a lot of products. China is a notable exception to this trend.

Davis and Caldeira say that their results show that enacting carbon pricing mechanisms at the point of extraction could be efficient and avoid the relocation of industries that could result from regulation at the point of combustion. Manufacturing of goods may shift from one country to another, but fossil fuel resources are geographically fixed.

They found that regulating the fossil fuels extracted in China, the US, the Middle East, Russia, Canada, Australia, India, and Norway would cover 67% of global carbon dioxide emissions. The incentive to participate would be the threat of missing out on revenues from carbon-linked tariffs imposed further down the supply chain.

Incorporating gross domestic product into these analyses highlights which countries' economies are most reliant on domestic resources of fossil energy and which economies are most dependent on traded fuels.

"The country of extraction gets to sell their products and earn foreign exchange. The country of production gets to buy less-expensive fuels and therefore sell less-expensive products. The country of consumption gets to buy products at lower cost." Caldeira said. "However, we all have an interest in preventing the climate risk that the use of these fuels entails."

To look at the data, visit: http://supplychainco2.stanford.edu/.

The Department of Global Ecology was established in 2002 to help build the scientific foundations for a sustainable future. The department is located on the campus of Stanford University, but is an independent research organization funded by the Carnegie Institution. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Steven Davis | EurekAlert!
Further information:
http://carnegiescience.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>